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Abstract

A multidomain Legendre pseudospectral method is developed for the solution of linear hyperbolic initial boundary

value problems, with mixed boundary conditions, in general two-dimensional and axisymmetric geometries. A weak

collocation spectral method is utilized for the spatial approximation of a generic wave evolution equation over multiple

nonoverlapping subdomains. The system of ordinary differential equations that stems from the above procedure is inte-

grated in time by implicit as well as explicit high order temporal approximation algorithms. The weak formalism of the

influence matrix method is combined with the implicit approximation, so as to efficiently solve the coupled system of

linear equations after the full discretization, while a novel technique for avoiding the amplification of roundoff error at

high temporal resolution simulations with the implicit temporal integration methods, is also studied. An innovative

method for the treatment of Dirichlet boundary conditions is proposed, in order to avoid the order reduction which

usually arises with the utilization of the explicit time integrator. Furthermore, appropriate modifications are reported,

for dealing with the pole singularity problem faced by the weak formulation of axisymmetric problems. Finally, numer-

ical simulations of a variety of wave problems on curvilinear geometries and unstructured subdomain configurations are

presented in order to assess the capabilities of the proposed methodology in handling efficiently general hyperbolic dif-

ferential operators.
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1. Introduction

Spectral methods constitute a highly accurate family of numerical methodologies for solving boundary

value, eigenvalue and time-dependent problems [1–3]. Their collaboration with domain decomposition

algorithms has succeeded in extending their range of applicability in problems formulated over complicated
geometric configurations while preserving their inherent exponential convergence properties. The desirable

features of spectral methods, regarding the solution of wave evolution problems, are mainly the excellent

dispersion and dissipation characteristics. This has lead to their effective utilization in different areas of

computational physics where wave phenomena play a fundamental role, like compressible fluid dynamics,

aeroacoustics, computational electromagnetics, elastodynamics, engineering seismology and many others.

In the present paper, we develop a combination of a weak Legendre pseudospectral domain decompo-

sition method for the spatial approximation, along with implicit and explicit high order temporal integra-

tion algorithms, for the solution of general initial boundary value problems of second order in both space
and time, with mixed boundary conditions (of Dirichlet, Neumann and Robin type, including absorbing

boundary conditions as well), over two-dimensional and axisymmetric computational domains. The partic-

ular spatial discretization method results from a modified variational formulation of the differential prob-

lem, which leads to a discrete weak Legendre collocation approximation in multiple subdomains. This

methodology has been successfully used in the treatment of linear elliptic boundary value problems [4,5],

in the solution of simple wave equations with mixed boundary conditions over rectangular geometries

[6], as well as for the simulation of acoustic and elastic wave equations over structured subdomain config-

urations [7,8] and recently in the solution of the incompressible Navier–Stokes equations over unstructured
quadrilateral subdomain topologies in [9]. We provide a unified form of the method able to efficiently han-

dle coordinate transformations, curvilinear solution domains and unstructured subdomain partitions, by

successfully treating grid nodes which simultaneously belong to more than one subdomains and thus

achieving time domain solutions of wave propagation problems over complex geometries. We utilize this

method both for imposing Neumann and Robin boundary operators with enhanced accuracy and for

naturally treating the equations that govern the interface unknowns, in a way which resembles the well-

established finite element and spectral element algorithms but in a pure spectral collocation framework.

The system of ordinary differential equations which arises from the spatial discretization procedure is
integrated in time using implicit temporal approximation schemes which belong to the family of Newmark

time integrators, as well as a classical high resolution explicit Runge–Kutta–Nyström temporal discretiza-

tion algorithm. A weak formulation of the influence matrix technique is utilized for the decoupling of the

equations for the internal nodes from the ones governing the interface and some of the boundary unknowns,

while a combination of direct methods is used for tackling effectively the linear algebraic system of discrete

equations resulting from the approximation by the implicit temporal integration method. A novel technique

for avoiding the uncontrollable increase of the roundoff error with the implicit method is investigated, while

a very efficient method for surmounting the problem of order reduction, which typically occurs with the
usage of Runge–Kutta type integrators, is also formulated in a way consistent with the nature of the spatial

discretization method employed. Finally, we report the necessary modifications that have to take place for

the successful treatment of the pole singularity encountered at axisymmetric formulations of initial boundary

value problems, which differ in accordance to the type of method used for the time integration.

The present paper is organized as follows. Section 2 gives the mathematical formulation of the generic

initial boundary value problem. In Section 3, the continuous and discrete forms of the spatial approxima-

tion method are presented. The temporal discretization methods utilized in this work, as well as some as-

pects of their implementation, are reported in Section 4. Finally, Section 5 is completely devoted to the
numerical simulations of a plethora of wave evolution problems, starting with simple model problems in

order to establish the convergence properties of the numerical methods and ending with more realistic

and complicated solutions of general hyperbolic differential equations.
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2. The initial boundary value problem

We consider a two-dimensional open and bounded domain X � R2 with a Lipschitz continuous bound-

ary oX, a time interval I ¼ ð0; T Þ � R with T > 0, and set XI = X · I. The boundary oX can be decomposed

into three open, bounded and mutually disjoint sets namely CD, CN and CR such that �CD [ �CN [ �CR ¼ oX,
CD \ CN = ;, CN \ CR = ; and CR \ CD = ;, where the overlying bar is used to indicate closed domains.

Let us introduce, at this point, some functional spaces that will prove to be very helpful in the subsequent

presentation. Let X be a subset of Rn ðn ¼ 1; 2 or 3Þ and Y be a linear topological space. By [Y]2 we indi-

cate the product space Y · Y. We denote by C0(X) the space consisting of all functions F : X! Y defined

on X, which are bounded and continuous with respect to the topology of Y. Then for m = 1,2, . . . we define
Cm(X) to be the totality of functions which possess continuous and bounded partial derivatives of all orders

less or equal than m, in X. Clearly, C1ðX Þ ¼
T1

m¼1C
mðX Þ. When Y is a subset of Rn it is assumed to be

endowed with the usual metric topology. Finally, we use the customary notation Lp(X), (1 6 p < 1) for
the family of spaces of Lebesgue integrable functions over X, L1(X) for the set of essentially bounded func-

tions and Hm(X), m = 0,1,2, . . . for the Sobolev spaces of integer order.

We proceed by defining a linear spatial differential operator of the form:
L ¼ �
X2
i¼1

X2
j¼1

o

oxi
aij

o

oxj

� �
þ
X2
j¼1

aj
o

oxj
þ a0Id ;
where x
* ¼ ðx1; x2Þ ¼ ðx; yÞ is an element of R2 and Id is the identity operator. We assume that the coeffi-

cients aij; aj; a0 : XI ! R belong to C1(XI). The above operator is said to satisfy the strictly elliptic hypoth-

esis, if for every x
* 2 X and t 2 I, positive constants k0 and l0 exist such that the following relation holds:
l0

X2
j¼1

n2j P
X2
i¼1

X2
j¼1

aijðx
*
; tÞninj P k0

X2
j¼1

n2j ;
for every real vector n
*

¼ ðn1; n2Þ. Moreover, we define a function c : XI ! R such that c 2 C1(XI), together
with the following seven scalar fields u0; u1 : X ! R; g : CD � I ! R; h : CN � I ! R and q; b0; b1 : CR�
I ! R. We demand that b0, b1 2 C1(CR · I) and b0 P 0 8ðx*; tÞ 2 CR � I .

Suppose that we have the initial boundary value problem of finding a function u ¼ uðx*; tÞ : XI ! R that

satisfies:
H ½u� ¼ o2u
ot2 þ c ou

ot þ L½u� ¼ f on XI ;

u ¼ u0 on X for t ¼ 0;
ou
ot ¼ u1 on X for t ¼ 0;

u ¼ g on CD � I ;
ou
onL

¼ h on CN � I ;
ou
onL

þ b0 ou
ot þ b1u ¼ q on CR � I ;

���������������
ð1Þ
with ou
onL

¼ D
*

L½u� � n
* ¼

P2

i¼1

P2

j¼1aij
ou
oxj

ni the ‘‘transversal’’ (or ‘‘co-normal’’) derivative with respect to L,

n
* ¼ ðn1; n2Þ the outward unit normal vector on oX, and f a given real-valued function on XI. Clearly, when

CR is not empty, the functions b0 and b1 cannot be simultaneously equal to zero on CR for t 2 I. Problem (1)

is the strong formulation of a generic linear evolution partial differential equation of second order both in

space and time, supplemented with proper initial and mixed boundary conditions of all types (Dirichlet,

Neumann and Robin) so that the well-posedness of the total problem is ensured. The strictly elliptic nature

of L leads us to conclude that H is a normal hyperbolic operator. For a complete mathematical analysis of

such problems from a functional analytic point of view, the interested reader could consult [10]. The choice
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of the initial wave field u0 and of its first temporal derivative u1 is certainly not arbitrary. A rigorous dis-

cussion on the countably infinite set of compatibility conditions that must be satisfied by the initial condi-

tions, for the solution to be analytic everywhere in the space–time domain, is supplied in [11].
3. Spatial discretization method

In the following sections, we apply the method of lines in order to discretize the spatial differential oper-

ators while leaving the temporal ones continuous and so formulating a semi-discrete version of the initial

boundary value problem. Towards this end, we utilize the weak Legendre collocation method, which is a

member of the family of generalized Galerkin techniques, and has been successfully used in [9,12,13] to tackle

diverse problems in mathematical physics. First, we state the variational formulation of the problem and

then we proceed sequentially with the continuous and discrete versions of the spatial approximation method.

3.1. Continuous formulation

The variational formulation of problem (1) reads:
u 2 U ¼ fuðtÞ : I ! H 1ðXÞju ¼ g on CD � Ig;
aðt; u; vÞ ¼ bðt; vÞ 8v 2 V ¼ fv 2 H 1ðXÞjv ¼ 0 on CDg; t 2 I ;

����� ð2Þ
where the above forms are given as:
aðt; u; vÞ ¼
Z
X

Z
o2u
ot2

vþ c
ou
ot

vþ
X2
i¼1

X2
j¼1

aij
ou
oxj

ov
oxi

þ
X2
j¼1

aj
ou
oxj

vþ a0uv

 !
þ
Z
CR

b0
ou
ot

þ b1u
� �

v;

bðt; vÞ ¼
Z
X

Z
fvþ

Z
CN

hvþ
Z
CR

qv;
with o2u
ot2 ðtÞ; ouot ðtÞ, f(t) : I ! L2(X), h(t) : I ! L2(CN), q(t) : I ! L2(CR). We should add that here and in some

parts of the following text, we do not indicate the integration measures in the integral forms for the sake of

simplicity.
In the framework of a domain decomposition method, we subdivide the computational domain X, into

open and bounded nonoverlapping quadrilateral subdomains Xm, m 2M, (M being a set of positive inte-

gers) in a generally unstructured way so as �X ¼
S

m2M
�X
m
, and Xk \ Xl = ; for k 6¼ l. This subdivision is such

that the closures of two neighboring subdomains are allowed to intersect only at a point or along an entire

side and that the subdomain borders remain stationary for all times. We define the sets

Cm
N ¼ oXm \ CN and Cm

R ¼ oXm \ CR, so the functionals that appear in the variational formulation (2) ob-

tain the following form:
aðt; u; vÞ ¼
X
m2M

Z
Xm

Z
o2um

ot2
vm þ cm

oum

ot
vm þ

X2
i¼1

X2
j¼1

amij
oum

oxj

ovm

oxi
þ
X2
j¼1

amj
oum

oxj
vm þ am0 u

mvm
 !

þ
X
m2M

Z
Cm
R

bm0
oum

ot
þ bm1 u

m

� �
vm;

bðt; vÞ ¼
X
m2M

Z
Xm

Z
f mvm þ

Z
Cm
N

hmvm þ
Z
Cm
R

qmvm
( )

:
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By the superscript m on functions we indicate their restriction in the subdomain Xm. The same super-

script on differential operators is used to denote the restriction of their action on the subspace of func-

tions defined on Xm, as well as the replacement of the coefficient functions by their restrictions in the

specific subdomain.

Assuming that:
u 2 Û ¼ fuðtÞ : I ! H 2ðXÞju ¼ g on CD � Ig;
we see that the bilinear form a can be transformed into:
aðt; u; vÞ ¼
X
m2M

Z
Xm

Z
o2um

ot2
þ cm

oum

ot
þ Lm½um�

� �
vm þ

I
oXm

D
*m

L ½um� � n
*m� �

vm

8<
:

9=
;

þ
X
m2M

Z
Cm
R

bm0
oum

ot
þ bm1 u

m

� �
vm:
Clearly, for the above form to be correctly defined, we may only require:
v 2 V̂ ¼ fv 2 L2ðXÞjv ¼ 0 on CDg:

In view of the fact that the subdomain topology is globally unstructured and that the boundaries oXm are

generally curvilinear, we assume that there exists a family of isomorphisms F
*m

, m 2 M, that map the ref-
erence square �D ¼ ½�1; 1�2 onto each subdomain �X

m
, in such a way that the reference border oD is also

mapped onto the subdomain one oXm. We set a typical element of �D as the ordered pair of real numbers

r
* ¼ ðr1; r2Þ ¼ ðr; sÞ and indicate any point in �X

m
by x

*m
¼ ðxm1 ; xm2 Þ ¼ ðxm; ymÞ. Using the proceeding nota-

tion, we can write:
F
*m

: �D ! �X
m
; F

*m

2 ½C2ð�DÞ�2 : x*
m
¼ F

*m

ð r*Þ; m 2 M :
The Jacobian of the coordinate transformation, which is defined as Jm ¼ detðoxmi =ormj Þ, i, j = 1,2, m 2M,

differs from zero at every point in each subdomain and since it never changes sign inside the same subdo-

main, it can be used in order to characterize the orientation of the boundaries oXm.

Let us set the four sides of the subdomain �X
m
as Cm,p, p = 1, . . ., 4, so that

S4

p¼1
�C
m;p ¼ oXm. Accord-

ingly, we may define the four sides of the parent element �D as Sp, p = 1, . . ., 4, with
S4

p¼1
�S
p ¼ oD. As we

have already stated, the coordinate transformation operator maps each of the Sp onto each of the Cm,p,

so that we can symbolically write Cm;p ¼ F
*m

ðSpÞ, m 2 M, p = 1, . . ., 4. Finally, let Pm
N and Pm

R be the index
sets:
Pm
N ¼ p j16 p6 4;Cm;p � Cm

N;C
m;p ¼ F

*m

ðSpÞ;m 2 M
� �

;

Pm
R ¼ p j16 p6 4;Cm;p � Cm

R;C
m;p ¼ F

*m

ðSpÞ;m 2 M
� �

:

After all of these, the modified variational formulation of the generalized initial boundary value problem
(1), is:
u 2 Û ;

aðt; u; vÞ ¼ bðt; vÞ 8v 2 V̂ ; t 2 I ;

����� ð3Þ
where:
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aðt; u; vÞ ¼
X
m2M

Z 1

s¼�1

Z 1

r¼�1

o2um

ot2
þ cm

oum

ot
þ Lm½um�

� �
vmjJmjdrds

þ
X
m2M

X4
p¼1

Z 1

fp¼�1
Sp

D
*m

L ½um� � N
*m;p

� �
vmdfp þ

X
m2M

X
p2Pm

R

Z 1

fp¼�1
Sp

bm0
oum

ot
þ bm1 u

m

� �
vm N

*m;p��� ���dfp;

bðt; vÞ ¼
X
m2M

Z 1

s¼�1

Z 1

r¼�1

f mvmjJmjdrdsþ
X
m2M

X
p2Pm

N

Z 1

fp¼�1
Sp

hmvm N
*m;p��� ���dfp

þ
X
m2M

X
p2Pm

R

Z 1

fp¼�1
Sp

qmvm N
*m;p��� ���dfp:
The dummy variable fp and the integration measures dfp are determined in accordance with the sets Sp over

which the line integrals are defined. The specific form of the vectors N
*m;p

is given in [9], while the symbol i i
indicates the norm function which defines the usual metric topology of R2.

3.2. Discrete formulation

In the present subsection, we proceed with the spatially discretized form of the modified continuous var-

iational formulation of the generic initial boundary value problem. Given a positive integer N, we define the

space PN ð�DÞ as the totality of continuous functions up to the boundary, which are real-valued algebraic

polynomials of degree less or equal than N in each independent spatial variable. Obviously, we have

PNð�DÞ � C0ð�DÞ. The approximants (or interpolants as we later state) umN of the restrictions um of u, in each

subdomain, belong to PNð�DÞ.
Next, we introduce a set of distinct nodes that covers �D. We consider the integer vector index j

*

¼ ðj1; j2Þ,
0 6 j1,j2 6 N and define the set:
J ¼ j
*

¼ ðj1; j2Þ j06 j1; j2 6N ; r
*

j
* ¼ ðrj1 ; sj2Þ 2 �D

n o
:

The collocation mesh on �D is expressed as the set of points f r*
j
*g

j
*
2J
. In a similar way, we define the bound-

ary index sets to be:
Jp
b ¼ j

*

¼ ðj1; j2Þ j06 j1; j2 6N ; r
*

j
* ¼ ðrj1 ; sj2Þ 2 �S

p
n o

; p ¼ 1; . . . ; 4:
The grids x
*m

j
* ¼ ðxmj1 ; y

m
j2
Þ ¼ F

*m

ð r*
j
*Þ 2 �X

m
; j
*

2 J , that cover each subdomain are calculated by applying the

coordinate transformation operators on the reference mesh. Next, let us introduce a global numbering sys-

tem of nodes by assigning a different scalar index to each grid point and define the set:
JG ¼ l j x*l ¼ ðxl; ylÞ 2 �X
n o

;

where l is a positive integer. The whole pseudospectral grid over the computational domain may now be

written as fx*lgl2JG. In a similar manner, we are able to denote the subsets of indices of the nodes, in the
global numbering system, on which we impose Dirichlet, Neumann or Robin boundary conditions as

JG
b;D � JG; JG

b;N � JG and JG
b;R � JG, respectively. The existence of two numbering systems mandates the

introduction of a non-invertible operator G : M · J ! JG, which determines the correlations between the

subdomains, the local and the global indices.

For a detailed definition of the local f/ j
*

ð r*Þg
j
*
2J

and global fvlðx*Þgl2JG Lagrange basis, we refer to pre-

viously published work (see [9]). By using the local basis functions we are in the position to express the

interpolants umN as:
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umN ð r
*
; tÞ ¼

X
j
*
2J

umN
� 	

j
* tð Þ/ j

*

r
*
� �

;

where humN i j*ðtÞ ¼ umN ð r
*

j
*; tÞ ¼ umN ðrj1 ; sj2 ; tÞ for all t 2 I. In order to accomplish a high order representation of

the geometry, we employ the isoparametric technique already used in [14], which allows us to define the

geometric variables by the same spatial interpolation rules as the unknown function of the differential equa-

tion, in the framework of a fully conformal discrete approximation.

Before proceeding with the discretization of the modified variational formulation, we need to fix a family

of weights wj > 0 , 0 6 j 6 N, and set the bilinear form:
ðfa; fbÞN ¼
X
j
*
2J

fah i
j
*hfbi j*x j

*;
where x
j
* ¼ wj1wj2 , while faðtÞ; fbðtÞ : I ! C0ð�DÞ are arbitrary functions with hfai j* ¼ faðrj1 ; sj2 ; tÞ; hfbi j* ¼

fbðrj1 ; sj2 ; tÞ for every t 2 I. By determining the r
*

j
* and x

j
*; j

*

2 J , as the knots and weights, respectively,
of quadrature formulas of Gaussian type, we can approximate the double integral

R 1

s¼�1

R 1

r¼�1
fafb drds

by (fa, fb)N, with maximum precision. Similarly, the line integrals may be expressed as:
Z 1

fp¼�1
Sp

fa df
p ¼

X
j
*
2Jp

b

fah i
j
*xp

j
*;
where xp

j
* ¼ wj1 or wj2 in accordance with the integration domain Sp.

The subscript N on functions indicates their polynomial interpolant, while the same subscript at the

expressions of the differential forms denotes the approximations to these operators obtained by replacing

the exact derivatives by collocation ones. For notational convenience, we use hfDi i
* ¼ fDðri1 ; si2 ; tÞ; i

*

2 J ,
and ÆfXæl = fX(xl,yl,t), l 2 JG, for functions that are correspondingly defined on �D and �X for all t 2 I. Fur-

thermore, we define a set of subdomain indices as Ml ¼ fm 2 M jx*l 2 �X
m
; l 2 JGg � M and also assume

that the indices l 2 JG and j
*

m 2 J are related through l ¼ Gðm; j
*

mÞ, with m 2Ml. Finally, the discrete form

of the modified variational formulation (3) may be given as:
uN 2 ÛN ;

aNðt; uN ; vlN Þ ¼ bN ðt; vlN Þ 8vlN 2 V̂ N ; t 2 I ;

����� ð4Þ
where we have indicated the spaces of trial and test functions by:
ÛN ¼ uN ðtÞ : I ! C0ð�XÞ jumN ðtÞ : I ! PN ð�DÞ;m 2 M ; uNh il tð Þ ¼ gNh il tð Þ for l 2 JG
b;D; t 2 I

n o
;

V̂ N ¼ vlN 2 C0ð�XÞ; l 2 JG jvl;mN 2 PN ð�DÞ;m 2 Ml and vlN ¼ 0 in �X for l 2 JG
b;D

n o
:

The linear functionals that are included in the above discretization, are given by the following formulas:
aN ðt; uN ; vlNÞ ¼
X
m2Ml

X
i
*
2J

d2 umN
� 	

i
*

dt2
þ cmN
� 	

i
*

d umN
� 	

i
*

dt
þ Lm

N ½umN �
� 	

i
*

 !
/ j

*

m


 �
i
*

Jm
N

�� ��� 	
i
*x

i
*

þ
X
m2Ml

X4
p¼1

X
i
*
2Jp

b

D
*m

LN
½umN � � N

*m;pD E
i
* / j

*

m


 �
i
*
xp

i
*

þ
X
m2Ml

X
p2Pm

R

X
i
*
2Jp

bm0;N
D E

i
*

d umN
� 	

i
*

dt
þ bm1;N
D E

i
* umN
� 	

i
*

 !
N
*m;p��� ���D E

i
* / j

*

m


 �
i
*
xp

i
*;
b
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bN ðt; vlNÞ ¼
X
m2Ml

X
i
*
2J

f m
N

� 	
i
* / j

*

m


 �
i
*

Jm
N

�� ��� 	
i
*x

i
*

þ
X
m2Ml

X
p2Pm

N

X
i
*
2Jp

b

hmN
� 	

i
* N

*m;p��� ���D E
i
* / j

*

m


 �
i
*
xp

i
*

þ
X
m2Ml

X
p2Pm

R

X
i
*
2Jp

b

qmN
� 	

i
* N

*m;p��� ���D E
i
* / j

*

m


 �
i
*
xp

i
*:
We have chosen to apply the pseudospectral method in the framework of a Legendre approximation (see

[1–3]) in order to maintain maximum precision in the discrete evaluation of the integral forms. This means

that the knots and weights previously defined, correspond to the Legendre–Gauss–Lobatto quadrature for-
mula. To be more precise, if we use the variable n to denote either r or s, then we define n0 = �1, nN = 1 and

fnjgN�1
j¼1 to be the zeroes of dPL

N=dn, where P
L
N ðnÞ stands for the Legendre polynomial of degree N. Accord-

ingly, the family of weights is fixed as wj ¼ 2
NðNþ1Þ

1

½PL
N ðnjÞ�

2 for all j = 0, . . .,N. Finally, the Lagrange basis func-

tions are defined over the Gauss–Lobatto points, while the discrete approximation of the differential

operators is generated by using Legendre pseudospectral derivatives.

In this section, we described the spatially discretized version of the variational formulation of a generic ini-

tial boundary value problem of second order. The ellipticity of the spatial operator allowed us to utilize the

weak Legendre collocation method for deriving the discrete set of equations. The main differences between

the weak and the strong formalisms occur at the way the Neumann and Robin boundary conditions are en-

forced, as well as at the setting of the conditions for the nodes that lie on the interface between neighboring
subdomains. Previous studies both on elliptic and on hyperbolic problems (see [4–6]), have shown that the

weak imposition of Neumann and Robin boundary operators enjoys higher accuracy and prevents the unde-

sirable onset of numerically induced oscillations due to inadequate evaluation of the transversal derivatives

near the boundary in contradiction with the strong (pointwise) formulation. Before ending this section, let

us mention that the type of interface conditions which stem from the weak formalism is clearer and undoubt-

edly outclasses the traditionalC1 enforcement usedwith the classical pseudospectral formulation, especially at

points where more than two subdomains meet which typically occur at unstructured subdomain partitions.
4. Temporal discretization methods

Subsequently, we proceed by discretizing the temporal differential operators and thus ending with the fully

discrete form of the linear initial boundary value problem. In this process, we utilize both implicit as well as

explicit self-starting time integration methods. Let us introduce some notational conventions which will greatly

facilitate the following presentation. We are in the position to define an index set of positive integers as

Jt = {n 2 N|0 6 n < K, K 2 Nn{0}}, where K stands for any natural number different from 0. The constant
time step interval can be introduced as the ratioDt = T/K.Wemay set a uniform grid on the closed time interval

as the set of distinct points ftn 2 �I j tn ¼ nDt; n 2 J t [ fKgg. For simplicity, throughout this section we use,

hfDini* ¼ fDðri1 ; si2 ; tnÞ; i
*

2 J ; and hfXinl ¼ fXðxl; yl; tnÞ, l 2 JG, with n 2 Jt [ {K} for functions that (for all

t 2 I) are defined on �D and �X, respectively, and where the superscripts are used to denote discrete time levels.

4.1. Newmark family of time integration methods

In this subsection, we choose the Newmark family of schemes in order to discretize the problem in time
(see [15,16]). These methods are characterized by a set of two parameters b 2 ð0; 1

2
� and c 2 ½1

2
; 1�, which

determine the accuracy and stability properties of the different schemes. We consider only implicit methods

in this work, so we exclude the zero value from the domain of definition of b. A commonly used choice of
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parameters is ðb; cÞ ¼ ð1
4
; 1
2
Þ, that leads to the second-order accurate unconditionally stable average acceler-

ation scheme, and which is certainly the one we utilize at the section of the numerical simulations. Next, we

introduce two functions, namely u(1) and u(2), which serve as approximations of ou/ot and o2u/ot2, respec-

tively, and will prove to be of paramount importance in the subsequent discussion. We present the method

in a predictor–corrector form since it offers obvious advantages from an implementational point of view
(the overlying tildes are used to denote intermediate auxiliary dependent variables):

� Prediction step:

At each time step and for each node that does not belong to the Dirichlet boundary, compute:
~uð1ÞN

D Enþ1

l
¼ uð1ÞN

D En

l
þ Dtð1� cÞ uð2ÞN

D En

l
;

~uNh inþ1
l ¼ uNh inl þ Dt uð1ÞN

D En

l
þ Dt2

2
ð1� 2bÞ uð2ÞN

D En

l
;

for l 2 JG n JG
b;D and n 2 Jt.

� Solution step:
Next, solve the following discrete linear elliptic boundary value problem:�
uN 2 Û
nþ1

N ;

aeNðuN ; vlN Þ ¼ beN ðvlN Þ 8vlN 2 V̂ N ;

����

where: n o
Û
nþ1

N ¼ uN 2 C0ð�XÞ; t ¼ tnþ1 jumN 2 PN ð�DÞ; t ¼ tnþ1;m 2 M ; uNh inþ1
l ¼ gNh inþ1

l for l 2 JG
b;D ;
and: � �
 �

aeN ðuN ; vlNÞ ¼

X
m2Ml

X
i
*
2J

Lm
N ½umN �

� 	nþ1

i
* þ 1

bDt2
umN
� 	nþ1

i
* þ c

bDt
cmN
� 	nþ1

i
* umN
� 	nþ1

i
* / j

*

m

i
*

Jm
N

�� ��� 	
i
*x

i
*

þ
X
m2Ml

X4
p¼1

X
i
*
2Jp

b

D
*m

LN
½umN � � N

*m;pD Enþ1

i
* / j

*

m


 �
i
*
xp

i
*

þ
X
m2Ml

X
p2Pm

R

X
i
*
2Jp

b

c
bDt

bm0;N
D Enþ1

i
* umN
� 	nþ1

i
* þ bm1;N

D Enþ1

i
* umN
� 	nþ1

i
*

� �
N
*m;p��� ���D E

i
* / j

*

m


 �
i
*
xp

i
*;

beN ðvlN Þ ¼
X
m2Ml

X
i
*
2J

f m
N

� 	nþ1

i
* / j

*

m


 �
i
*

Jm
N

�� ��� 	
i
*x

i
*

þ
X
m2Ml

X
p2Pm

N

X
i
*
2Jp

b

hmN
� 	nþ1

i
* N

*m;p��� ���D E
i
* / j

*

m


 �
i
*
xp

i
*

þ
X
m2Ml

X
p2Pm

R

X
i
*
2Jp

b

qmN
� 	nþ1

i
* N

*m;p��� ���D E
i
* / j

*

m


 �
i
*
xp

i
*

�
X
m2Ml

X
i
*
2J

cmN
� 	nþ1

i
* ~uð1Þ;mN

D Enþ1

i
* � c

bDt
cmN
� 	nþ1

i
* ~umN
� 	nþ1

i
* � 1

bDt2
~umN
� 	nþ1

i
*

� �
/ j

*

m


 �
i
*

Jm
N

�� ��� 	
i
*x

i
*

�
X
m2Ml

X
p2Pm

R

X
i
*
2Jp

b

bm0;N
D Enþ1

i
* ~uð1Þ;mN

D Enþ1

i
* � c

bDt
bm0;N
D Enþ1

i
* ~umN
� 	nþ1

i
*

� �
N
*m;p��� ���D E

i
* / j

*

m


 �
i
*
xp

i
*;
for n 2 Jt.
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� Correction step:

Finally calculate:
uð2ÞN

D Enþ1

l
¼ 1

bDt2
uNh inþ1

l � ~uNh inþ1
l

� �
; ð5Þ

uð1ÞN

D Enþ1

l
¼ ~uð1ÞN

D Enþ1

l
þ cDt uð2ÞN

D Enþ1

l
; ð6Þ
for l 2 JG n JG
b;D and n 2 Jt.

Clearly, for the initial step we have huN i0l ¼ hu0;N il, l 2 JG, huð1ÞN i0l ¼ hu1;N il; l 2 JG n JG
b;D, while the set of val-

ues fhuð2ÞN i0lgl2JGnJG
b;D

is computed as the approximation of the set fho2uN
ot2 i0lgl2JGnJG

b;D
, which in turn is directly

calculated from the semi-discrete modified variational formulation (4).

The above presented form is the classical formulation for implementing a member of the Newmark

family of time integration methods. After intensive numerical experimentation, we detected a slight dis-

advantage of the proposed methodology, namely a significant increase of the roundoff error as Dt! 0,

which resulted in the complete loss of the theoretically predicted order of accuracy of the method. This
is of minor importance since very small time steps are seldom used with implicit time integration

schemes, but we believe that it is at least aesthetically pleasing for one to know that it is possible

to achieve machine precision accuracy by decreasing the time step without having to worry about

amplification of roundoff errors. Such a behavior can easily be avoided by a simple change at the cor-

rection step of the algorithm. To fix ideas, instead of using (5) to compute fhuð2ÞN inþ1

l gl2JGnJG
b;D
, we solve

the semi-discretized variational formulation (4) for this set of values, after substituting the temporal

derivatives with their discrete approximants and after using relation (6). This modified version of the

correction step succeeds in preventing the accumulation of roundoff error as the time step decreases,
but unfortunately demands a higher price to be paid in terms of computational efficiency and program-

ming complexity.

The single most time consuming step in the above formulation, is the solution of the discrete elliptic

boundary value problem at every distinct time level. An effective way of addressing such a problem in

the framework of domain decomposition methods is the so-called influence matrix algorithm. A detailed

presentation of application of such a method to fully discretized elliptic variational boundary value

problems is included in [9]. Here, we only mention that by utilizing this kind of technique we are able

to obtain the solution of the global system at the cost of two local solutions in each subdomain, plus a
solution of a problem concerning the interface and some of the boundary values, plus the computation

of the discrete Green�s functions and the formation of the components of the influence matrix, which is

usually performed in a preprocessing stage of the calculations. For the solution of the linear algebraic

systems that result from the above decoupling procedure, we have chosen to apply the standard LU-

factorization method in collaboration with the efficient matrix-diagonalization technique (whenever

the form of the specific problem allowed us to do so), although other algorithms could have been con-

sidered as well.

Before ending this subsection, let us mention some important modifications that have to take place in the
special case of axisymmetric acoustic wave simulations. When the spatial differential operator is the Lapla-

cian one in cylindrical coordinates and axial symmetry is assumed, then we have:
L ¼ �c20
o
2

ox2
þ o

2

oy2
þ 1

y
o

oy

� �
; ð7Þ
with c0 2 R the constant wave speed and (x,y) the axial and radial coordinates, respectively. On the axis of

symmetry (y = 0) a boundary condition must be specified so that the problem to have a unique bounded

solution. This ‘‘symmetry condition’’ has the form of a homogeneous Neumann boundary condition,
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namely ou
onL

¼ 0. In the weak collocation formulation of the problem, the imposition of Neumann and Robin

boundary operators at the discrete level involves the computation of the pseudospectral residual of the par-

tial differential equation on the given grid node. In view of the fact that L has a simple pole singularity at

y = 0, we are obliged to modify the semi-discrete variational statement of the initial boundary value prob-

lem, before proceeding to the temporal discretization. The modified formulation of the linear functionals
that appear in (4), reads: � 	 � 	 !
aN ðt; uN ; vlNÞ ¼
X
m2Ml

X
i
*
2J

ymh i
i
*

d2 umN i
*

dt2
þ ymh i

i
* cmN
� 	

i
*

d umN i
*

dt
þ ymLm

N ½umN �
� 	

i
* / j

*

m


 �
i
*

Jm
N

�� ��� 	
i
*x

i
*

þ
X
m2Ml

X4
p¼1

X
i
*
2Jp

b

ymh i
i
* D

*m

LN
½umN � � N

*m;pD E
i
* / j

*

m


 �
i
*
xp

i
*

þ
X
m2Ml

X
p2Pm

R

X
i
*
2Jp

b

ymh i
i
* bm0;N
D E

i
*

d umN
� 	

i
*

dt
þ ymh i

i
* bm1;N
D E

i
* umN
� 	

i
*

 !
N
*m;p��� ���D E

i
* / j

*

m


 �
i
*
xp

i
*;

bN ðt; vlN Þ ¼
X
m2Ml

X
i
*
2J

ymh i
i
* f m

N

� 	
i
* / j

*

m
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i
*:
By utilizing such a technique, the pole singularity of the spatial differential operator is efficiently eliminated,

while the spaces of trial and test functions remain unchanged. After these modifications, we are in the posi-

tion of applying a member of the Newmark family of schemes, in order to integrate in time the system of

semi-discretized equations. From the above stated forms, it is easily concluded that when axisymmetric
problems are considered, only the sets of values fhyilhu

ð1Þ
N ilgl2JGnJG

b;D
; fhyilhu

ð2Þ
N ilgl2JGnJG

b;D
; fhyil

h~uð1ÞN ilgl2JGnJG
b;D

and fhyilh~uNilgl2JGnJG
b;D

need to be calculated at the prediction and correction steps of the

temporal approximation algorithm at every discrete time level.

4.2. Runge–Kutta–Nyström method

In the present subsection, we employ a high order explicit Runge–Kutta–Nyström method in order to

discretize the temporal differential operators. Having in mind that the wave field along with its temporal
derivatives of the first two orders are continuous throughout �X for all times, namely uN ðtÞ; ouNot ðtÞ;
o2uN
ot2 ðtÞ : I ! C0ð�XÞ, we are able to reformulate the semi-discrete modified variational statement (4) into

the following explicit system of ordinary differential equations:
d2 uNh il
dt2 tð Þ ¼ F l t; uNh ik tð Þ; d uNh ik

dt tð Þ
� �

; l 2 JG n JG
b;D; k 2 JG; t 2 I ;

uNh il tð Þ ¼ gNh il tð Þ; l 2 JG
b;D; t 2 I ;

uNh il 0ð Þ ¼ u0;Nh il; l 2 JG;
d uNh il
dt 0ð Þ ¼ u1;Nh il; l 2 JG;

�����������

where the precise form of the functions F l; l 2 JG n JG

b;D is assumed to be known.
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Before proceeding with the detailed presentation of the temporal integrator, let us comment that a dis-

turbing feature of applying explicit Runge–Kutta methods to initial boundary value problems discretized

by the method of lines, is the loss of accuracy (or order reduction of the algorithm if you prefer) that

stems from the wrong specification of boundary conditions at the intermediate stages of the integration

procedure (see [17,18]). In our case, since the Neumann and Robin boundary operators are naturally in-
cluded in the modified variational formulation, this problem arises only for the nodes that belong to the

Dirichlet boundary. A known remedy for the solution of such problems is to enforce an extension of the

inner Runge–Kutta scheme on the boundary, while ignoring the given boundary condition (see for in-

stance [17]). This technique cannot be applied in collaboration with the weak collocation method for

the spatial approximation, because the test functions of the variational formulation are identically equal

to zero on the portion of the boundary where Dirichlet conditions are to be enforced. In order to cope

with this situation, which arises whenever the weak formalism and an explicit Runge–Kutta–Nyström

method must be simultaneously applied, we suggest a suitable projection of the partial differential equa-
tion on the finite-dimensional space spanned by the global Lagrange basis fvlN ðx

*Þgl2JG
b;D
. The precise semi-

discrete statement reads:
X
m2Ml

X
i
*
2J

d2 umN
� 	

i
*

dt2
þ cmN
� 	

i
*

d umN
� 	

i
*

dt
þ Lm

N ½umN �
� 	

i
* � f m

N

� 	
i
*

 !
/ j

*

m


 �
i
*

Jm
N

�� ��� 	
i
*x

i
* ¼ 0; ð8Þ
for all l 2 JG
b;D with l ¼ Gðm; j

*

mÞ; j
*

m 2 J , m 2 Ml, and it is to be used only for the computation of values

involved in the intermediate stages of the Runge–Kutta–Nyström method. Relation (8) gives us the oppor-

tunity of extending the family of functions fF lgl2JGnJG
b;D

so as to include new members defined for l 2 JG
b;D.

Although this treatment is illustrated in the framework of the weak Legendre collocation method for the

spatial approximation, we believe that the idea is widely applicable, and can be generally combined with
methods that discretize the variational formulation of the initial boundary value problem, especially with

the ones that use a Lagrangian system of basis functions. Moreover, it can be utilized even when the partial

differential equation is of first order in time and also if the spatial operator is nonlinear.

We now discuss the precise formulation of a classic Runge–Kutta–Nyström method of fourth order for

the temporal approximation (see [19]). Let us define four sets of auxiliary variables as fKi
lgl2JG ; i ¼ 1; . . . ; 4.

If the enriched family of functions fF lgl2JG has a dependence on first-order temporal derivatives, then the

proposed algorithm obtains the following form (keeping in mind that
dhuN ik

dt ¼ houN
ot ik; k 2 JG):

� Intermediate steps:

For each discrete time level and for all spatial nodes calculate:
K1
l ¼ F l tn; uNh ink ;

ouN
ot


 �n

k

� �
;

K2
l ¼ F l tn þ Dt

2
; uNh ink þ

Dt
2

ouN
ot


 �n

k

þ Dt2

8
K1

k ;
ouN
ot


 �n

k

þ Dt
2
K1

k

� �
;

K3
l ¼ F l tn þ Dt

2
; uNh ink þ

Dt
2

ouN
ot


 �n

k

þ Dt2

8
K1

k ;
ouN
ot


 �n

k

þ Dt
2
K2

k

� �
;

K4
l ¼ F l tn þ Dt; uNh ink þ Dt

ouN
ot


 �n

k

þ Dt2

2
K3

k ;
ouN
ot


 �n

k

þ K3
k

� �
;

for all l 2 JG, where k 2 JG and n 2 Jt.



D. Kondaxakis, S. Tsangaris / Journal of Computational Physics 202 (2005) 533–576 545
� Update step:

Calculate the values of the wave field and of its first-order time derivative on every node which does not

belong to the Dirichlet portion of the boundary, as:
uNh inþ1
l ¼ uNh inl þ Dt

ouN
ot


 �n

l

þ Dt
6

K1
l þ K2

l þ K3
l


 �� �
;

ouN
ot


 �nþ1

l

¼ ouN
ot


 �n

l

þ Dt
6

K1
l þ 2K2

l þ 2K3
l þ K4

l


 �
;

for all l 2 JG n JG
b;D and each n 2 Jt. For the grid points on the Dirichlet boundary, compute:
uNh inþ1
l ¼ gNh inþ1

l ;

ouN
ot


 �nþ1

l

¼ ogN
ot


 �nþ1

l

;

for all l 2 JG
b;D and each n 2 Jt.

If the functions fF lgl2JG do not depend on the first-order temporal derivative of the wave field, then

the third argument of these functions does no longer exist and one of the four sets of auxiliary var-

iables ceases to be necessary for the overall formulation. For the first step, we use the initial conditions

huN i0l ¼ hu0;N il and houN
ot i

0

l ¼ hu1;N il; 8l 2 JG, in order to start the algorithm. Please note that although

the Dirichlet boundary conditions are completely ignored at the intermediate steps (as they are re-

placed by (8)), they are strongly enforced at the updating step along with their first-order temporal

derivative.
Before closing this subsection, let us address the subject of the ‘‘apparent’’ singularity which arises

when cylindrical axially symmetric problems are considered. As we have already mentioned, the actual

difficulty lays in attempting to enforce the discrete condition on the symmetry axis, since this involves

the collocation of the singular spatial differential operator of the partial differential equation. Unfortu-

nately, a technique similar to the one proposed in the previous subsection cannot be applied when an

explicit method like the Runge–Kutta–Nysröm is utilized, since the time integrator demands the sole

presence of the second-order temporal derivative of the wave field at the left-hand side of the semi-

discrete system of equations. Furthermore, we would prefer to avoid transforming the dependent wave
variable, like done in [20], because with such a method the recovering of the original wave field on the

symmetry axis becomes a very difficult (if not impossible) task in general subdomain topologies due to

the irreversibility of the transformation performed. Remedies for similar problems which mainly involve

the integration of the Navier–Stokes equations in cylindrical geometries for both incompressible as well

as compressible flows, are presented in [21–23]. In this work, we adopt a method similar to the one

proposed by Constantinescu and Lele in [24] but in a rather different context. Let us temporarily shift

to the three dimensional setting of a wave propagation problem in cylindrical coordinates. Applying the

parity theorem stated by Boyd in [3], we can expand an arbitrary scalar function which is analytic at
y = 0, as a Fourier series in the polar angle z, in the following way:
uðx; y; z; tÞ ¼
X1
l¼0

Ua;lðx; y; tÞ cosðlzÞ þ Ub;lðx; y; tÞ sinðlzÞ
� �

;

where:
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Ua;lðx; y; tÞ ¼ yl
X1
k¼0

Alkðx; tÞy2k;

Ub;lðx; y; tÞ ¼ yl
X1
k¼0

Blkðx; tÞy2k:
When axial symmetry is assumed (in the sense that the functions involved have no dependence on the polar

angle), we deduce from the above series representation that Ua,l = Ub,l = 0 for all l P 1 and so:
uðx; y; tÞ ¼ Ua;0ðx; y; tÞ ¼
X1
k¼0

A0kðx; tÞy2k:
It is easy to confirm that:
ou
oy

ðx; y; tÞ ¼
X1
k¼1

2kA0kðx; tÞy2k�1;

o
2u
oy2

ðx; y; tÞ ¼
X1
k¼1

2kð2k� 1ÞA0kðx; tÞy2k�2;
and consequently:
lim
y!0

ou
oy

� �
¼ 0;

lim
y!0

1

y
ou
oy

� �
¼ lim

y!0

o2u
oy2

� �
¼ 2A01:
The former of the previous relations recovers the homogeneous Neumann boundary condition we impose

on the symmetry axis, while the latter lets us conclude that:
lim
y!0

L½u� ¼ lim
y!0

�c20
o2u
ox2

þ 2
o2u
oy2

� �� �
; ð9Þ
for any arbitrary analytic function u at y = 0, with L the spatial operator given by (7). Expression (9) can be

viewed as an application of L�Hôpital�s rule on the singular term of the spatial differential operator (see

[25]), which enables us to resolve the singularity problem that arises from the cooperation between the weak

collocation and the explicit Runge–Kutta–Nysröm method for the numerical simulation of axisymmetric
wave propagation problems.
5. Numerical wave simulations

In this section, we present a variety of pseudospectral wave solutions in order to argue in favor of

the efficiency and robustness of the proposed methodology. In general, we validated both the spatial

and the temporal approximation methods for the solution of initial boundary value problems with
mixed boundary conditions, in different subdomain topologies. We began by using an exact two-dimen-

sional standing wave solution so as to test the algorithm in a single domain setting, as well as in an

unstructured subdomain partition. Then, we studied the convergence properties of the different schemes

by computing a traveling plane wave solution of the acoustic wave equation and examined the perform-
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ance of the various methods in complex curvilinear geometries. Subsequently, we proceeded by solving

for two axisymmetric analytical solutions and confirmed the efficiency of our proposed modifications

for axially symmetric evolution partial differential equations. Afterwards, we concerned ourselves with

the dissipation and dispersion error behavior of the numerical schemes, and studied the spatial and

temporal resolution requirements for the computation of plane wave solutions. Up to this point, we
have only dealt with exact solutions of model problems. Next, we present wave propagation results

in unbounded domains with utilization of absorbing boundary conditions and properly formulated diss-

ipative wave operators. Finally, we performed an axisymmetric acoustic pulse evolution simulation in a

constricted tube, while comparing our results in terms of accuracy and computer code efficiency, with a

well-established spectral collocation form of the discontinuous Galerkin method. The theoretical con-

vergence rates of the spatial and temporal discretization schemes were generally verified by the compu-

tational results.

Before we actually proceed with the specific numerical examples, we should comment, for a while, on the
norms used for the convergence studies and for general comparison purposes. Suppose that X is a B-space

defined over X and set a scalar function as w : XI ! R, with w(t) : I ! X(X). By determining the B-space X

and consequently its norm function i iX, we can safely compare two different elements of X, namely

wa(t),wb(t) : I ! X(X), just by calculating the metric (or ‘‘distance’’) function dX(wa,wb) = iwa�wbiX at

any time level we wish the comparison to be performed. Next, we present the (time-dependent) discrete

form of the specific norms to be used in the following subsections:
wk kN ;L1 ¼ max
l2JG

wj jh il
� �

with wðtÞ : I ! C0ð�XÞ;

wk kN ;L1 ¼
X
m2M

X
i
*
2J

wmj jh i
i
* Jm

N

�� ��� 	
i
*x

i
* for wmðtÞ : I ! C0ð�DÞ and m 2 M ;

wk kN ;L2 ¼
X
m2M

X
i
*
2J

wmh i
i
*

� �2
Jm
N

�� ��� 	
i
*x

i
*

8<
:

9=
;

1=2

for wmðtÞ : I ! C0ð�DÞ and m 2 M ;

wk kN ;H1 ¼
X
m2M

X
i
*
2J

wmh i
i
*

� �2
þ owm

ox


 �
i
*

� �2

þ owm

oy


 �
i
*

� �2
" #

Jm
N

�� ��� 	
i
*x

i
*

8<
:

9=
;

1=2

;

with wmðtÞ : I ! C1ð�DÞ and m 2 M. The subscript N on the norm symbols is used to denote the fact that the

previous forms constitute an equivalent discretized formulation of the standard norm functions of the L1,

L1, L2 and H1 B-spaces, respectively. The same subscript is used on the notations of the corresponding

metrics.
Finally, let us note that in all subsequent numerical simulations we used the Runge–Kutta–Nyström

method for the spatial convergence studies, so as to take advantage of its inherent high order accuracy.

Moreover, we ensured that the temporal discretization errors were kept negligible whenever we tested

the spatial accuracy of the method and vice versa. All of the results to be shown in this article were obtained

on a 2.4 GHz Pentium Personal Computer.

5.1. Two-dimensional standing wave

For the beginning of the numerical experiments, we employed the proposed methodologies in order to

solve the non-homogeneous initial boundary value problem:
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o2u
ot2 � c20

o2u
ox2 þ o2u

oy2

� �
¼ U 0 c20 j2

x þ j2
y

� �
� x2

h i
sinðxtÞ sinðjxxÞ sinðjyyÞ on XI ;

u ¼ 0 on X for t ¼ 0;
ou
ot ¼ U 0x sinðjxxÞ sinðjyyÞ on X for t ¼ 0;

u ¼ 0 on CD � I ;
ou
onL

¼ c20U 0jx sinðxtÞ cosðjxxÞ sinðjyyÞ on CN;1 � I ;
ou
onL

¼ c20U 0jy sinðxtÞ sinðjxxÞ cosðjyyÞ on CN;2 � I ;

����������������

with:
CD ¼ fðx; yÞ 2 oX jx ¼ 0; y 2 ð0; LyÞg [ fðx; yÞ 2 oX jx 2 ð0; LxÞ; y ¼ 0g;

CN;1 ¼ fðx; yÞ 2 oX jx ¼ Lx; y 2 ð0; LyÞg;

CN;2 ¼ fðx; yÞ 2 oX jx 2 ð0; LxÞ; y ¼ Lyg;
where (x,y) are the spatial coordinates in a Cartesian frame of reference, c0 is the constant wave speed and

CN = CN,1 [ CN,2 with CN,1 \ CN,2 = ;. The spatial computational domain was X = (0,Lx) · (0,Ly), with

Lx; Ly 2 R and Lx,Ly > 0. The source term, initial and boundary conditions were such that the above stated
problem was solved by the following exact infinitely differentiable stationary wave solution:
uEðx; y; tÞ ¼ U 0 sinðxtÞ sinðjxxÞ sinðjyyÞ;

with U 0; jx; jy ;x 2 R. In the following simulations, we used jx = jy = p, Lx = Ly = 2, U0 = 1 and x = 1.

The problem was first solved by utilizing the monodomain version of the method. We used a unitary

wave speed and a final time T = 1 for this specific test case. The convergence of the spatial error of the weak

collocation approximation was exponential, as demonstrated in Fig. 1. Concerning the temporal behavior

of the different schemes, the corresponding absolute errors are presented in Tables 1–3 for the Runge–
Kutta–Nyström, the Newmark and the modified Newmark methods, respectively. Double precision accu-

racy was achieved by the fourth-order Runge–Kutta–Nyström method. As noted previously, the Newmark

method failed to deliver the theoretically predicted second-order convergence rate in the limit Dt ! 0. On

the other hand, the results of the modified version were not corrupted by the roundoff errors and managed

to retain full second-order accuracy.

Next, we solved the same partial differential equation on an unstructured subdomain configuration shown

in Fig. 2.We used c0 = 5, Dirichlet boundary conditions on all of the computational border and fixed the time

interval as I = (0.0,0.2). Infinite order spatial convergence was achieved by the spectral method, as illustrated
in Fig. 3. The results of the modified Newmark method for the time integration are displayed in Table 4 and

confirm the second-order temporal convergence rate of this scheme in a complex subdomain topology.

This test case enabled us to validate all the methodologies proposed, in a rectangular geometry config-

uration. The monodomain method gave satisfactory results for a mixed Dirichlet–Neumann initial bound-

ary value problem, while the multidomain algorithm succeeded in a truly unstructured subdomain

partition. The Runge–Kutta–Nyström time integrator delivered full fourth-order accuracy and finally,

the modified Newmark method managed to surmount the problems faced by the classical implementation

of the algorithm and stand up to the theoretical predictions.
5.2. Two-dimensional traveling wave

As a second numerical example, we considered a traveling plane wave solution of the acoustic wave

equation. By the aid of this test case, we were able to study the convergence properties of the method in



Fig. 1. Convergence plot for the two-dimensional standing wave problem at t = 1.0. Monodomain topology (j) E ¼ dN;L1ðuN; uEÞ,
(N) E ¼ dN;L2 ðuN; uEÞ and (d) E ¼ dN;H1 ðuN; uEÞ.

Table 3

Temporal accuracy results for the two-dimensional standing wave problem at t = 1.0 (monodomain topology and modified Newmark

method)

Dt dN;L1ðuN; uEÞ dN;L2 ðuN; uEÞ dN;H1 ðuN; uEÞ
10�1 2.64 · 10�4 2.12 · 10�4 9.25 · 10�4

10�2 2.67 · 10�6 2.14 · 10�6 9.29 · 10�6

10�3 2.67 · 10�8 2.14 · 10�8 9.29 · 10�8

10�4 2.67 · 10�10 2.14 · 10�10 9.28 · 10�10

10�5 9.82 · 10�12 7.60 · 10�12 2.35 · 10�11

Table 2

Temporal accuracy results for the two-dimensional standing wave problem at t = 1.0 (monodomain topology and Newmark method)

Dt dN;L1ðuN; uEÞ dN;L2 ðuN; uEÞ dN;H1 ðuN; uEÞ
10�1 2.64 · 10�4 2.12 · 10�4 9.25 · 10�4

10�2 2.67 · 10�6 2.14 · 10�6 9.29 · 10�6

10�3 2.66 · 10�8 2.13 · 10�8 9.24 · 10�8

10�4 1.65 · 10�8 1.60 · 10�8 5.74 · 10�8

10�5 1.78 · 10�6 1.73 · 10�6 6.26 · 10�6

Table 1

Temporal accuracy results for the two-dimensional standing wave problem at t = 1.0 (monodomain topology and Runge–Kutta–

Nyström method)

Dt dN;L1ðuN; uEÞ dN;L2 ðuN; uEÞ dN;H1 ðuN; uEÞ
10�1 7.72 · 10�4 5.84 · 10�4 1.06 · 10�2

10�2 3.80 · 10�10 2.72 · 10�10 2.53 · 10�9

10�3 5.19 · 10�14 2.64 · 10�14 2.30 · 10�13
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Fig. 2. Unstructured grid with N = 15, for the two-dimensional standing wave problem.

Fig. 3. Convergence plot for the two-dimensional standing wave problem at t = 0.2. Unstructured subdomain topology (j)

E ¼ dN;L1ðuN; uEÞ, (N) E ¼ dN;L2 ðuN; uEÞ and (d) E ¼ dN;H1 ðuN; uEÞ.
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a wave propagation problem, while exploring its performance in both simple as well as complicated geo-

metrical settings. The specific form of the initial boundary value problem was:



Table 4

Temporal accuracy results for the two-dimensional standing wave problem at t = 0.2 (unstructured subdomain topology and modified

Newmark method)

Dt dN;L1ðuN; uEÞ dN;L2 ðuN; uEÞ dN;H1 ðuN; uEÞ
10�1 8.51 · 10�6 8.52 · 10�6 3.88 · 10�5

10�2 3.68 · 10�7 3.68 · 10�7 1.68 · 10�6

10�3 3.70 · 10�9 3.70 · 10�9 1.68 · 10�8

10�4 3.70 · 10�11 3.70 · 10�11 1.68 · 10�10
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o2u
ot2 � c20

o2u
ox2 þ o2u

oy2

� �
¼ 0 on XI ;

u ¼ U 0 cosðjxxþ jyyÞ on X for t ¼ 0;
ou
ot ¼ U 0x sinðjxxþ jyyÞ on X for t ¼ 0;

u ¼ U 0 cosðjxxþ jyy � xtÞ on CD � I ;
ou
onL

¼ c20U 0jy sinðjxxþ jyy � xtÞ on CN;1 � I ;
ou
onL

¼ �c20U 0jy sinðjxxþ jyy � xtÞ on CN;2 � I ;

����������������

where:
CD ¼ fðx; yÞ 2 oX jx ¼ 0; y 2 ð0; LyÞg [ fðx; yÞ 2 oX jx ¼ Lx; y 2 ð0; LyÞg;

CN;1 ¼ fðx; yÞ 2 oX jx 2 ð0; LxÞ; y ¼ 0g;

CN;2 ¼ fðx; yÞ 2 oX jx 2 ð0; LxÞ; y ¼ Lyg:

The analytical solution was given by the relation:
uEðx; y; tÞ ¼ U 0 cosðjxxþ jyy � xtÞ;

with x2 ¼ c20ðj2

x þ j2
yÞ. The spatial domain was chosen to be X = (0,Lx) · (0,Ly) and the parameters which

determine the specific form of the problem and solution were set as c0 = 0.5, U0 = 1, jx ¼ jy ¼
ffiffiffi
2

p
,

Lx = Ly = 5 and x = 1. We considered a four subdomain partition of the computational domain, comprised

by orthogonal equally sized elements. For this simulation, we set the open time interval as I = (0,2). Spec-

tral accuracy is presented for this plane wave solution in Fig. 4. Tables 5–7 display the convergence prop-

erties of the different temporal approximation methods. Once again the Runge–Kutta–Nyström method

delivered fourth-order accuracy, while the modified version of the Newmark method succeeded in achieving

second-order accuracy in contradiction with the traditional formulation. In general, the behavior of the

multidomain method in the context of a wave propagation problem with mixed boundary conditions,

was found to be very satisfying.
In order to address the issue of efficiency of the different time integration schemes, we present compar-

isons concerning CPU time, memory allocation and relative error norms. First, let us define CMe
t to be the

CPU time consumed per time step by each method, where ‘‘Me’’ stands for ‘‘RKN’’, ‘‘N’’ and ‘‘MN’’ sym-

bolizing the Runge–Kutta–Nyström, the Newmark and the modified Newmark methods, respectively. In a

similar manner, CMe
m is used to denote the computer memory occupied by each one of the different schemes,

while CMe
e ¼ d

N;L2 ðuN;uEÞ
kuEkN;L2

is defined as the relative error of the solution obtained by each method with respect

to the L2 norm. By forming the ratios:
KMe
RKN;t ¼

CMe
t

CRKN
t

; KMe
RKN;m ¼ CMe

m

CRKN
m

and KMe
RKN;e ¼ Log10

CMe
e

CRKN
e

 !
;



Fig. 4. Convergence plot for the two-dimensional traveling wave problem at t = 2.0. Four subdomain topology (j) E ¼ dN;L1 ðuN ;uEÞ
kuEkN;L1

, (N)

E ¼ d
N;L2 ðuN ;uEÞ
kuEkN;L2

and (d) E ¼ d
N;H1 ðuN ;uEÞ
kuEkN;H1

.

Table 5

Temporal accuracy results for the two-dimensional traveling wave problem at t = 2.0 (four subdomain topology and Runge–Kutta–

Nyström method)

Dt dN;L1ðuN; uEÞ=kuEkN;L1 dN;L2 ðuN; uEÞ=kuEkN;L2 dN;H1 ðuN; uEÞ=kuEkN;H1

10�1 1.40 · 10�6 6.22 · 10�7 8.71 · 10�7

10�2 1.67 · 10�10 6.05 · 10�11 8.41 · 10�11

10�3 1.56 · 10�14 6.82 · 10�15 1.72 · 10�14

Table 6

Temporal accuracy results for the two-dimensional traveling wave problem at t = 2.0 (four subdomain topology and Newmark

method)

Dt dN;L1ðuN; uEÞ=kuEkN;L1 dN;L2 ðuN; uEÞ=kuEkN;L2 dN;H1 ðuN; uEÞ=kuEkN;H1

10�1 2.56 · 10�3 1.59 · 10�3 1.65 · 10�3

10�2 2.56 · 10�5 1.60 · 10�5 1.66 · 10�5

10�3 2.51 · 10�7 1.58 · 10�7 1.64 · 10�7

10�4 7.14 · 10�7 2.18 · 10�7 2.69 · 10�7

10�5 7.11 · 10�5 2.10 · 10�5 2.62 · 10�5

Table 7

Temporal accuracy results for the two-dimensional traveling wave problem at t = 2.0 (four subdomain topology and modified

Newmark method)

Dt dN;L1ðuN; uEÞ=kuEkN;L1 dN;L2 ðuN; uEÞ=kuEkN;L2 dN;H1 ðuN; uEÞ=kuEkN;H1

10�1 2.56 · 10�3 1.59 · 10�3 1.65 · 10�3

10�2 2.56 · 10�5 1.60 · 10�5 1.66 · 10�5

10�3 2.56 · 10�7 1.60 · 10�7 1.66 · 10�7

10�4 2.56 · 10�9 1.59 · 10�9 1.65 · 10�9

10�5 1.25 · 10�10 4.94 · 10�11 9.91 · 10�11
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we were in the position to study the performance of every one of the implicit temporal approximation meth-

ods relatively to the explicit Runge–Kutta–Nyström scheme. The mathematical setting of the problem was

retained, while the time step Dt = 0.0001 was used by all methods for the specific simulations. Table 8 pre-

sents the results for the four subdomain partition of the computational domain, for different values of the

degree of the approximating polynomial N in each element, while Table 9 contains similar results but for
the case of constant N = 10 and different decompositions of the computational domain into square

elements, with Sn denoting the total number of subdomains. It is rather obvious that the Runge–Kutta–

Nyström algorithm was the most efficient in terms of CPU time, memory allocation and accuracy. The

modified Newmark scheme was proven to be better than the conventional Newmark method on the subject

of accuracy, but fell short if CPU time and memory usage were primarily considered, as expected. Before

ending with the efficiency results, let us mention that the preprocessing operations of each algorithm were

not included in the time measurements and comment that the inefficiency of the implicit schemes is gener-

ally balanced by their unconditional stability properties, which enable the use of larger time steps at the cost
of lower accuracy.

Subsequently, we proceeded with the numerical solution of the same problem in a complex geometry

configuration by utilizing a complicated subdomain partition of the computational domain which included

curvilinear quadrilateral elements. The detailed mesh is plotted in Fig. 5 and is bounded by [0,Lx] · [0,Ly].

This grid was chosen to show that the method can solve on complex curvilinear geometries without regard

to the number of subdomains that come together at a point. For this simulation, we used c0 = 5, only

Dirichlet boundary conditions on the spatial domain border and set the final time T for our studies equal
Table 8

Computer code performance results for the two-dimensional traveling wave problem at t = 2.0 (four subdomain topology)

N Me KMe
RKN;t KMe

RKN;m KMe
RKN;e

6 N 0.98 1.38 0.0001

MN 1.21 1.42 0.0000

8 N 1.15 1.37 0.0020

MN 1.39 1.42 0.0000

10 N 1.29 1.38 2.2394

MN 1.54 1.43 0.4126

12 N 1.40 1.39 4.8980

MN 1.66 1.43 2.7951

14 N 1.51 1.41 7.1806

MN 1.78 1.45 5.1493

Table 9

Computer code performance results for the two-dimensional traveling wave problem at t = 2.0 (constant degree of approximating

polynomial N = 10)

Sn Me KMe
RKN;t KMe

RKN;m KMe
RKN;e

1 N 1.18 1.34 0.0012

MN 1.41 1.38 0.0000

4 N 1.29 1.38 2.2394

MN 1.54 1.43 0.4126

9 N 1.46 1.48 3.9203

MN 1.72 1.52 2.3225

16 N 1.73 1.86 5.4668

MN 2.00 1.91 3.9415

25 N 2.08 2.56 6.1990

MN 2.35 2.60 4.8062



Fig. 5. Complex geometry configuration for the two-dimensional traveling wave problem, with N = 12.
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to 0.4. The results of the p-convergence study are displayed in Fig. 6, while the performance of the modified

Newmark method for the temporal discretization is presented in Table 10. At this point, we feel necessary

to note that at corner points where more than two subdomains meet, the present weak formulation of the

pseudospectral method faced no difficulty in contrast with the customary strong formulation. Furthermore,
not any kind of reflections or spurious modes were detected from the passage of the traveling wave through

the interelement boundaries, as the dispersion and dissipation errors were kept at a very low level in the well

resolved simulations.

5.3. Axisymmetric standing waves

In this subsection, we test the numerical methods in the context of smooth axisymmetric wave solutions.

The first problem which was studied, had the following form:
o2u
ot2 � c20

o2u
ox2 þ o2u

oy2 þ 1
y
ou
oy

� �
¼ f on XI ;

u ¼ U 0 sinhðjxxÞ cosðjyyÞ on X for t ¼ 0;
ou
ot ¼ 0 on X for t ¼ 0;

u ¼ U 0 cosðxtÞ sinhðjxxÞ cosðjyyÞ on CD � I ;
ou
onL

¼ 0 on CN � I ;

���������������

with:
CD ¼ fðx; yÞ 2 oX jx ¼ �Lx; y 2 ð0; LyÞg [ fðx; yÞ 2 oX jx ¼ Lx; y 2 ð0; LyÞg;

CN ¼ fðx; yÞ 2 oX jx 2 ð�Lx; LxÞ; y ¼ 0g [ fðx; yÞ 2 oX jx 2 ð�Lx; LxÞ; y ¼ Lyg;



Fig. 6. Convergence plot for the two-dimensional traveling wave problem at t = 0.4. Complex subdomain topology (j) E ¼ dN;L1 ðuN ;uEÞ
kuEkN;L1

,

(N) E ¼ d
N;L2 ðuN ;uEÞ
kuEkN;L2

and (d) E ¼ d
N;H1 ðuN ;uEÞ
kuEkN;H1

.

Table 10

Temporal accuracy results for the two-dimensional traveling wave problem at t = 0.4 (complex subdomain topology and modified

Newmark method)

Dt dN;L1ðuN; uEÞ=kuEkN;L1 dN;L2 ðuN; uEÞ=kuEkN;L2 dN;H1 ðuN; uEÞ=kuEkN;H1

10�1 9.65 · 10�5 4.60 · 10�5 6.80 · 10�5

10�2 1.06 · 10�6 4.17 · 10�7 6.05 · 10�7

10�3 1.06 · 10�8 4.17 · 10�9 6.07 · 10�9

10�4 1.06 · 10�10 4.17 · 10�11 6.08 · 10�11
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where (x,y) are the axial and radial coordinates, respectively, in a cylindrical frame of reference. The com-

putational domain assumed the form X = (�Lx,Lx) · (0,Ly) and was initially partitioned in four orthogonal

subdomains of equal area. The source term f at the partial differential equation, was defined so that the

exact solution of the initial boundary value problem was:
uEðx; y; tÞ ¼ U 0 cosðxtÞ sinhðjxxÞ cosðjyyÞ:

In our simulations, the values c0 = 0.5, U0 = 0.5, jx = 1, jy = p, Lx = Ly = 2 and x = 2p were utilized, while

the final time for the computations was taken as T = 1. Fig. 7 clearly demonstrates the spectral convergence

of the spatial approximation with polynomial order and Table 11 confirms the high order accuracy of the
Runge–Kutta–Nyström method, as well as the success of modification (9) which was used for the imposi-

tion of the discrete equations on the axis of symmetry.

In the process of evaluating the convergence properties of the scheme with respect to the number of sub-

domains, let us define the mesh parameter:
hs ¼ maxfdiamðXmÞ jm 2 Mg;

which serves as an indicator of the element size. In the above expression, the diameter of the specific sub-
domain Xm is set as:



Fig. 7. Convergence plot for the axisymmetric standing wave problem at t = 1.0. Four subdomain topology (j) E ¼ dN;L1 ðuN ;uEÞ
kuEkN;L1

, (N)

E ¼ d
N;L2 ðuN ;uEÞ
kuEkN;L2

and (d) E ¼ d
N;H1 ðuN ;uEÞ
kuEkN;H1

.

Table 11

Temporal accuracy results for the axisymmetric standing wave problem at t = 1.0 (four subdomain topology and Runge–Kutta–

Nyström method)

Dt dN;L1ðuN; uEÞ=kuEkN;L1 dN;L2 ðuN; uEÞ=kuEkN;L2 dN;H1 ðuN; uEÞ=kuEkN;H1

10�1 5.15 · 10�4 4.04 · 10�4 6.56 · 10�4

10�2 6.01 · 10�8 4.15 · 10�8 7.17 · 10�8

10�3 5.92 · 10�12 4.15 · 10�12 7.15 · 10�12
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diamðXmÞ ¼ sup x
*m

� � x
*m

��

��� ��� j x*m

� ; x
*m

�� 2 Xm
n o

;

with m 2M, while i i denotes the Euclidean norm function on R2. At first, we considered the single element
case and then sequentially divided the computational domain into 4, 9, 16 and 25 orthogonal subdomains,

while retaining all the other simulation parameters of the previously considered mathematical problem and

fixing hs to be the common length of the diagonals of the individual elements. The domain decomposition

was such that each subdomain assumed the following form:
Xm ¼ �Lx þ jx
2Lxffiffiffiffiffi
Sn

p ;�Lx þ ðjx þ 1Þ 2Lxffiffiffiffiffi
Sn

p
� �

� jy
Lyffiffiffiffiffi
Sn

p ; ðjy þ 1Þ Lyffiffiffiffiffi
Sn

p
� �

;

with m 2M, jx; jy ¼ 0; . . . ;
ffiffiffiffiffi
Sn

p
� 1 and with Sn denoting the total number of elements. In this way, the

dependence of hs on Sn was given by:
hs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4L2

x þ L2
y

Sn

s
:

Fig. 8 illustrates the convergence of the spatial discretization with respect to hs, for four different values of

the polynomial degree N. It is rather evident that the error did not decrease at a geometric rate. A least
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squares fit to the logarithm of the relative L2 error as a function of the logarithm of the mesh parameter,

indicated the slopes 5.4468, 8.1963, 10.2625 and 11.8661, with correlation coefficients 0.9978, 0.9963, 0.9958

and 0.9943, for N equal to 5, 7, 9 and 11, respectively, so algebraic convergence of the approximation was

obtained as expected.

We proceeded by solving another axial symmetric stationary wave problem, namely:
Fig. 8.

(.) N
o2u
ot2 � c20

o2u
ox2 þ o2u

oy2 þ 1
y
ou
oy

� �
¼ f on XI ;

u ¼ 0 on X for t ¼ 0;
ou
ot ¼ U 0x cosðjxxÞ cosðjyyÞ on X for t ¼ 0;

u ¼ U 0 sinðxtÞ cosðjxxÞ cosðjyyÞ on CD � I ;
ou
onL

¼ 0 on CN � I ;

�������������

with:
CN ¼ fðx; yÞ 2 oX jx 2 ð0; Lx=2Þ; y ¼ 0g;

CD : �CD [ �CN ¼ oX;CD \ CN ¼ ;:

The source function f, this time, was obtained by setting the analytical solution of the previously stated

problem, as:
uEðx; y; tÞ ¼ U 0 sinðxtÞ cosðjxxÞ cosðjyyÞ:

The computational domain as well as the subdomain topology that we used were very similar to the ones

depicted in Fig. 5, but transformed by a linear mapping in such a way so that at the end to have
0 6 x 6 Lx and 0 6 y 6 Ly, with Lx = Ly = 2. In our calculations, we used c0 = 5, U0 = 1, jx = jy = p
and x = 1. Finally, the time interval was set as I = (0.0,0.2). Exponential convergence with order refinement

was once again confirmed, as shown in Fig. 9. Table 12 displays the temporal convergence of the Newmark
Convergence plot for the axisymmetric standing wave problem at t = 1.0. E ¼ d
N;L2 ðuN ;uEÞ
kuEkN;L2

: (j) N = 5, (N) N = 7, (d) N = 9 and

= 11. Continuous lines: least squares linear approximations.
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method for this numerical example. Full second-order accuracy has been achieved, while the reported mod-

ifications at the end of subsection 4.1 have succeeded in enabling the Newmark method to handle partial

differential equations with first-order pole singularities in their spatial differential operators. Table 13 pre-

sents the relative errors with respect to the H1 norm, for numerical solutions obtained with the explicit tem-

poral approximation method, by utilizing different time steps and polynomial degrees, but for the same
geometric configuration and total integration time. Since the Runge–Kutta–Nyström method is only con-

ditionally stable, there exists a maximum allowable time step for every spatial resolution, which can guar-

antee a bounded numerical solution according to the CFL stability criterion. These critical time step

intervals, for the specific numerical simulations conducted, are depicted in Table 13 (where the infinity sym-

bol is employed to denote the occurrence of instability) and decrease with polynomial order as predicted by

standard theoretical arguments.

Before ending, it is rather crucial to note that at this test case as well as at both the previous ones, the

replacement of the Dirichlet boundary conditions by relation (8) at the intermediate steps of the Runge–
Kutta–Nyström method was found to be completely satisfactory, since there was no numerical evidence

whatsoever of order reduction, or of any kind of loss of accuracy whenever the specific temporal discreti-

zation method was utilized. Finally, let us report that the collaboration between the influence matrix
Fig. 9. Convergence plot for the axisymmetric standing wave problem at t = 0.2. Complex subdomain topology (j) E ¼ dN;L1 ðuN ;uEÞ
kuEkN;L1

,

(N) E ¼ d
N;L2 ðuN ;uEÞ
kuEkN;L2

and (d) E ¼ d
N;H1 ðuN ;uEÞ
kuEkN;H1

.

Table 12

Temporal accuracy results for the axisymmetric standing wave problem at t = 0.2 (complex subdomain topology and Newmark

method)

Dt dN;L1ðuN; uEÞ=kuEkN;L1 dN;L2 ðuN; uEÞ=kuEkN;L2 dN;H1 ðuN; uEÞ=kuEkN;H1

10�1 2.18 · 10�5 1.30 · 10�5 1.04 · 10�4

10�2 3.86 · 10�7 1.22 · 10�7 9.92 · 10�7

10�3 4.52 · 10�9 1.27 · 10�9 1.08 · 10�8

10�4 2.37 · 10�11 9.65 · 10�12 1.03 · 10�10



Table 13

Stability results for the axisymmetric standing wave problem at t = 0.2 (complex subdomain topology and Runge–Kutta–Nyström

method E ¼ dN ;H1 ðuN ; uEÞ=kuEkN ;H1 )

Dt E for N = 6 E for N = 8 E for N = 10 E for N = 12

0.0004 1.07 · 10�5 3.78 · 10�8 3.15 · 10�10 3.20 · 10�12

0.0005 1.07 · 10�5 3.78 · 10�8 3.15 · 10�10 3.20 · 10�12

0.0008 1.07 · 10�5 3.78 · 10�8 3.16 · 10�10 7.42 · 10�6

0.0010 1.07 · 10�5 3.78 · 10�8 6.16 · 10�10 8.85 · 10+1

0.0016 1.07 · 10�5 4.02 · 10�8 2.24 · 10+8 1
0.0020 1.07 · 10�5 5.38 · 10�6 1 1
0.0025 1.07 · 10�5 1.33 · 10+3 1 1
0.0040 9.21 · 10�5 1 1 1
0.0050 2.81 · 10+7 1 1 1
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method and the implicit time integrator, as well as between the LU factorization and the matrix diagonal-

ization methods, were confirmed to perform well and to be quite efficient for subdomain topologies which

included a small number of curvilinear elements.
5.4. Wave propagation analysis

Henceforth, we address the issues of dissipation and dispersion errors of the spatial and temporal

approximation schemes, along with the resolution requirements necessary for the accurate solution of cer-

tain wave propagation problems. We began our numerical simulations by computing two plane wave solu-

tions of the homogeneous acoustic wave equation. The exact solutions were given by the relations:
uRe
E ðx; y; tÞ ¼ U 0 cosðjxxþ jyy � xtÞ;

uImE ðx; y; tÞ ¼ U 0 sinðjxxþ jyy � xtÞ;

with the frequency x and the Cartesian components jx, jy of the wave number vector satisfying the disper-

sion relation x2 ¼ c20ðj2
x þ j2

yÞ, where c0 stands for the constant magnitude of the phase velocity of the sin-

usoidal wavetrains. We used a computational domain of the form X = (0,Lx) · (0,Ly) and imposed only
Dirichlet boundary conditions on the border oX.

Let us indicate the numerical solutions of the above problems as uRe
N ¼ uRe

N ðx; y; tÞ and uImN ¼ uImN ðx; y; tÞ,
respectively. In order to provide a precise definition of the dissipation and dispersion errors, we construct

the following complex valued forms of the solutions:
ucEðx; y; tÞ ¼ uRe
E ðx; y; tÞ þ iuImE ðx; y; tÞ;

ucNðx; y; tÞ ¼ uRe
N ðx; y; tÞ þ iuImN ðx; y; tÞ;
where i ¼
ffiffiffiffiffiffiffi
�1

p
denotes the imaginary unit. Subsequently, we introduce the ratio of these complex solu-

tions, which in polar form reads:
Rc ¼ ucN
ucE

¼ Rcj j expði argRcÞ;
and certainly depends on the spatial and temporal independent variables. The modulus and argument of
this complex ratio are scalar functions which take their values in the field of real numbers:
Rcj j; argRc : XI ! R:
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Moreover:
Fig. 1

topolo
Rcj jðtÞ; argRcðtÞ : I ! X ðXÞ;

with X a B-space defined over X. We set the dissipation (or amplitude) error of the numerical solution in the
metric of the space X, to be the time-dependent function:
Ea
X ¼ dN ;X Rcj j; 1ð Þ:
Similarly, the dispersion (or phase) error is fixed by the relation:
Ep
X ¼ dN ;X ðargRc; 0Þ:
With these definitions at hand, we may proceed with the details of the specific simulations. We used

the values U0 = 1, Lx = Ly = 1 and c0 ¼
ffiffi
2

p

2
, while the frequency and the components of the wave num-

ber vector assumed the form: x = jx = jy = 2p/d, with d 2 R. We chose d = 0.4 and set the total inte-

gration time as T = 1. The computational domain was decomposed into two different subdomain

topologies. A nine square element partition was at first considered, and then an unstructured subdo-

main configuration was employed, similar to the one displayed in Fig. 2, but linearly transformed so

as to result with 0 6 x 6 Lx and 0 6 y 6 Ly. The convergence of the dissipation and dispersion er-

rors of the multidomain weak pseudospectral approximation was exponential, as depicted in Fig. 10.

Both the subdomain topologies delivered spectrally convergent results, although the unstructured par-

tition was characterized by higher error levels and slightly smaller asymptotic rates of geometric con-
vergence (see [3]). Tables 14 and 15 present the temporal behavior of the different time integrators,

for the nine element configuration. Double precision accuracy was finally achieved by the Runge–

Kutta–Nyström method, while the conventional and modified formulations of the Newmark scheme,

which produced identical results for the time steps considered, managed to deliver second-order

accurate results. The performance of the temporal approximation schemes was quite satisfactory, con-

sidering the fact that these methods are not optimized to reach minimum amplitude and phase errors

(see [26,27]). Generally, the time step must be limited by the tolerable values of these errors, for time

accurate numerical solutions to be obtained.
0. (a) Dissipation and (b) dispersion errors for the two-dimensional traveling wave problem at t = 1.0. Nine subdomain

gy: (j) X = L1, (N) X = L1 and (d) X = L2. Unstructured subdomain topology: (�) X = L1, (n) X = L1 and (s) X = L2.



Table 14

Temporal dissipation and dispersion errors for the two-dimensional traveling wave problem at t = 1.0 (nine subdomain topology and

Runge–Kutta–Nyström method)

Dt Ea
L1 Ea

L1
Ea
L2

Ep
L1 Ep

L1
Ep
L2

10�2 5.50 · 10�5 6.75 · 10�6 1.09 · 10�5 8.89 · 10�5 1.86 · 10�5 2.34 · 10�5

10�3 6.27 · 10�9 4.42 · 10�10 1.07 · 10�9 9.58 · 10�9 1.74 · 10�9 2.26 · 10�9

10�4 5.60 · 10�13 6.53 · 10�14 1.01 · 10�13 8.99 · 10�13 1.57 · 10�13 2.04 · 10�13

Table 15

Temporal dissipation and dispersion errors for the two-dimensional traveling wave problem at t = 1.0 (nine subdomain topology and

Newmark method)

Dt Ea
L1 Ea

L1 Ea
L2 Ep

L1 Ep
L1

Ep
L2

10�2 6.80 · 10�2 6.73 · 10�3 1.14 · 10�2 9.16 · 10�2 1.86 · 10�2 2.41 · 10�2

10�3 7.01 · 10�4 6.60 · 10�5 1.15 · 10�4 1.03 · 10�3 1.86 · 10�4 2.42 · 10�4

10�4 6.87 · 10�6 6.62 · 10�7 1.15 · 10�6 1.08 · 10�5 1.86 · 10�6 2.42 · 10�6
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Next, we continue with the wavelength and period resolution requirements of the different numerical

methodologies. It is fairly common (see [1]) for the resolution of a spectral spatial discretization procedure,

to be represented by the polynomials (or modes) per wavelength, necessary for the method to adequately

resolve the oscillating structure of a given wave, within some level of a priori prescribed error tolerance. The

same argument applies to the time integration schemes, only now one is interested to know the number of
points (or discrete time instants) per period, capable of capturing the distinctive features of the wave�s tem-

poral evolution. Before proceeding with the detailed exposition of the results, the following definitions are

in order. Suppose we are solving for a two-dimensional sinusoidal wavetrain, with Cartesian wave number

vector components jx, jy and frequency x, in a computational domain of the form X = (0,Lx) · (0,Ly). In

order to be conservative with our estimations of the resolution capabilities of the spatial discretization

scheme, let us set the number of wavelengths contained in X as:
Nw ¼

Lxjx
2p ; jx 6¼ 0; jy ¼ 0;
Lyjy
2p ; jx ¼ 0; jy 6¼ 0;

min Lxjx
2p ;

Lyjy
2p

n o
; jxjy 6¼ 0:

8>><
>>:
It is relatively straightforward to represent the number of modes per wavelength and element, employed by
the spatial approximation method, as the ratio N/Nw. The temporal period Tp of the wave motion is de-

fined, at any fixed spatial position, as the shortest time interval between two successive appearances of

the same phase, namely Tp = 2p/x. Consequently, the points per period utilized by the time integrator,

are given by Tp/Dt.
Towards the quantification of the above resolution parameters, we concerned ourselves with the numer-

ical solution of the homogeneous two-dimensional acoustic wave equation, for the real part of the analyt-

ical complex valued wavefunction previously considered. The mathematical setting of the problem was

retained along with all the simulation parameters, apart from d which assumed the values 0.1 and 0.2,
and from the final time for the computations which was fixed as T = d. We also considered different domain

decompositions than before, in particular a one domain configuration, a four and a nine square subdomain

partition. It is obvious that for the specific calculations Nw = 1/d, and that the temporal period of the wave

motion was identified with d. Fig. 11 displays the results of the spatial convergence for the spectral approx-

imation with respect to the ratio N/Nw. From this diagram, we can roughly conclude that to achieve 1%

accuracy for a wave-like solution, one needs 3.6, 2.0 and 1.4 polynomials per wavelength and subdomain,



562 D. Kondaxakis, S. Tsangaris / Journal of Computational Physics 202 (2005) 533–576
for the one, four and nine element decompositions, respectively. The result concerning the monodomain

topology, is in agreement with the one presented by Gottlieb and Orszag in [1], as well as by Boyd in [3]

for the one-dimensional case. It appears that the spatial approximation method (and particularly its multi-

domain version) is quite effective for the resolution of wave phenomena, especially in comparison with finite

difference and low order finite element discretizations. Error results for the time integration procedures with
respect to the number of time steps per period, are presented in Tables 16 and 17 for the nine subdomain

topology. In a similar manner, we can reach the conclusion that in order to resolve the temporal evolution

of a wave-like function within 1% of accuracy in the L2 norm, one should use approximately 10.8 points per

period with the Runge–Kutta–Nyström method and 37.5 points per period with the Newmark time inte-

gration scheme. This behavior is typical emanating from fourth- and second-order accurate discretization

methods, respectively.
Fig. 11. Convergence plot for the two-dimensional traveling wave problem at t = 1.0 for: (a) d = 0.1 and (b) d = 0.2. E ¼ dN;L2 ðuN; uEÞ:
(j) monodomain topology, (N) four subdomain topology and (d) nine subdomain topology.

Table 16

Temporal resolution results for the two-dimensional traveling wave problem (nine subdomain topology and Runge–Kutta–Nyström

method)

d Tp/Dt dN;L1ðuN; uEÞ dN;L2 ðuN; uEÞ dN;H1 ðuN; uEÞ
0.1 10 7.82 · 10�1 4.12 · 10�2 9.63 · 100

20 1.23 · 10�2 2.21 · 10�4 7.16 · 10�2

40 1.79 · 10�5 8.35 · 10�6 7.81 · 10�4

80 1.13 · 10�6 5.19 · 10�7 4.84 · 10�5

160 7.04 · 10�8 3.25 · 10�8 2.93 · 10�6

0.2 10 3.25 · 10�2 7.42 · 10�3 8.16 · 10�1

20 4.42 · 10�4 1.50 · 10�4 1.25 · 10�2

40 1.77 · 10�5 8.19 · 10�6 3.82 · 10�4

80 1.16 · 10�6 5.10 · 10�7 2.34 · 10�5

160 7.23 · 10�8 3.18 · 10�8 1.46 · 10�6



Table 17

Temporal resolution results for the two-dimensional traveling wave problem (nine subdomain topology and Newmark method)

d Tp/Dt dN;L1ðuN; uEÞ dN;L2 ðuN; uEÞ dN;H1 ðuN; uEÞ
0.1 20 7.40 · 10�2 3.52 · 10�2 3.15 · 100

40 1.88 · 10�2 8.89 · 10�3 7.97 · 10�1

80 4.71 · 10�3 2.23 · 10�3 2.00 · 10�1

160 1.18 · 10�3 5.58 · 10�4 4.99 · 10�2

320 2.95 · 10�4 1.39 · 10�4 1.25 · 10�2

640 7.37 · 10�5 3.49 · 10�5 3.12 · 10�3

0.2 20 7.46 · 10�2 3.43 · 10�2 1.55 · 100

40 1.89 · 10�2 8.66 · 10�3 3.91 · 10�1

80 4.75 · 10�3 2.17 · 10�3 9.80 · 10�2

160 1.19 · 10�3 5.43 · 10�4 2.45 · 10�2

320 2.96 · 10�4 1.36 · 10�4 6.13 · 10�3

640 7.41 · 10�5 3.39 · 10�5 1.53 · 10�3
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The numerical simulations in this subsection confirmed the excellent convergence properties of the

approximation methods, as far as the dissipation and dispersion errors are concerned. The spatial discre-

tization scheme succeeded in delivering exponentially convergent amplitude and phase errors, regardless of

the unstructured topology of the domain decomposition, while the temporal integrators behaved satisfac-

torily in wave propagation computations, despite the fact that they are not optimized for a usage of this

kind.

5.5. Absorbing boundary conditions and dissipative wave equations

We proceeded by testing the ability of the numerical schemes to handle Robin boundary conditions, as

well as more general hyperbolic differential operators. Towards this end, we utilized test cases similar to the

ones presented in [28], which concerned the evolution of Gaussian pulses in computational domains with

absorbing boundaries. In this context, we considered the following initial boundary value problem:
o2u
ot2 � c20

o2u
ox2 þ o2u

oy2

� �
¼ 0 on XI ;

u ¼ expf�ap½ðx� x0Þ2 þ ðy � y0Þ
2�g on X for t ¼ 0;

ou
ot ¼ 0 on X for t ¼ 0;

ou
onL

þ c0 ou
ot þ

c2
0
j

2
u ¼ 0 on CR � I ;

�����������

with ap; x0; y0 2 R;CR ¼ oX and j : CR ! R the curvature of the Robin portion of the boundary. Suppose
that an open subset C ˝ CR is defined by the set of equations x = x(1), y = y(1) with x; y : R � R ! R and

x,y 2 C2(R). Then the curvature of C is defined on any of its points as the function:
jð1Þ ¼
dx
d1

d2y
d12 �

dy
d1

d2x
d12

��� ���
dx
d1

� �2
þ dy

d1

� �2� �3=2
:

The Robin boundary condition which was imposed, belongs to the family of first-order radiation boundary
conditions (see [29–33]) which allow disturbances to exit the computational field and let us use finite do-

mains for the simulation of unbounded wave propagation. An elegant method to evaluate the performance

of an absorbing boundary condition, as well as to confirm its correct numerical implementation, is to
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calculate the evolution of the total energy of the wave field over the physical portion of the computational

domain. We use the term ‘‘physical domain’’ to denote the subset Xp ˝ X on which we are interested in

accurately simulating wave propagation with minimum dispersion and dissipation errors, in contradiction

with the ‘‘sponge domain’’ to be defined later in this subsection. The total energy over Xp is defined to be:
Fig. 1

(b) (x0
e ¼ 1

2

Z
Xp

Z
ou
ox

� �2

þ ou
oy

� �2

þ 1

c20

ou
ot

� �2
( )

;

and certainly is a function of time. For the discrete evaluation of the above form, we fix the set of subdo-

main indices Mp = {m 2M|Xm ˝ Xp} ˝M and specify:
eN ¼ 1

2

X
m2Mp

X
i
*
2J

oumN
ox


 �
i
*

� �2

þ oumN
oy


 �
i
*

� �2

þ 1

c20

oumN
ot


 �
i
*

� �2
( )

Jm
N

�� ��� 	
i
*x

i
*;
with umNðtÞ : I ! C1ð�DÞ and oum
N

ot ðtÞ : I ! C0ð�DÞ, for m 2 M. Please notice that the computation of the dis-

crete energy at any time level is straightforward, since both the Newmark as well as the Runge–Kutta–Ny-

ström time integration algorithms store the values of the first-order temporal derivative of the wave variable

at all the grid nodes of the computational domain.

For the first part of our numerical experiments, we considered the rectangular domain X = Xp = (0,1)2

which we subdivided into four subdomains of equal size. We used c0 = 2, ap = 500 and performed numerical

simulations with Gaussian pulses initiated at the centre of the domain (x0,y0) = (0.5,0.5), as well as at the
point (x0,y0) = (0.1,0.1) which is located near the corner. We utilized the Newmark method for our simu-

lations with Dt = 0.0004 and set the degree of the polynomial approximation as N = 25. The open time do-

mains that we considered were I = (0.0,0.4) and I = (0.0,0.8) for the computations with the initial pulse

located at the centre and near the corner of the physical domain, respectively. The evolution of the discrete

total energy divided by the energy of the wave field at the initial time eN,0 = eN(0) is presented in Fig. 12 for

these two simulations. Gradual decay of the wave energy is observed as the pulse exits the computational

domain, which confirms the success of the radiation boundary condition, as well as its correct numerical

enforcement by the weak collocation method.
Next, we proceeded with a different computational domain, namely X = Xp = D[(0.5,0.5),1.0], where

DðC
*

0;R0Þ is used to denote the disk of radius R0 with its centre at C
*

0, endowed with the subdomain topol-
2. Temporal evolution of the scaled discrete total energy for a pulse initially located at (a) (x0,y0) = (0.5,0.5) and

,y0) = (0.1,0.1). Rectangular computational domain. Absorbing boundary conditions.
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ogy shown in Fig. 13. For this test case, we utilized the Runge–Kutta–Nyström method for the temporal

integration with Dt = 0.002, along with ap = 50 and a polynomial degree N = 10 for the pseudospectral

method. The wave speed and the initial pulse locations were kept the same as previously, but we used

T = 0.8 and T = 1.6 as the final times for our computations of the pulses initially placed at the centre

and near the boundary of the physical domain, respectively. The scaled discrete total energy is depicted
in Fig. 14, where a similar decay as in the case of the rectangular domain is observed, which leads us to

conclude the ability of the absorbing boundary condition to handle domains with curved boundaries, along

with the success of the spectral method in enforcing Robin boundary operators on curvilinear borders.
Fig. 13. Unstructured grid with N = 10, for the disk computational domain.

Fig. 14. Temporal evolution of the scaled discrete total energy for a pulse initially located at (a) (x0,y0) = (0.5,0.5) and

(b) (x0,y0) = (0.1,0.1). Disk computational domain. Absorbing boundary conditions.
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Subsequently, we validated the proposed numerical methodologies in the framework of dissipative wave

differential operators. Towards this, we considered the following initial boundary value problem:
o2u
ot2 þ dar ou

ot � c20
o2u
ox2 þ o2u

oy2

� �
þ dbr2u ¼ 0 on XI ;

u ¼ expf�ap½ðx� x0Þ2 þ ðy � y0Þ
2�g on X for t ¼ 0;

ou
ot ¼ 0 on X for t ¼ 0;

u ¼ 0 on CD � I ;

�����������

with da; db 2 R, CD = oX and r : X ! R. Let us comment for a while on the specific form of the function

r = r(x,y). Consider a subset Xs � X such that �Xs [ �Xp ¼ �X and Xs \ Xp = ;. Xs is called ‘‘sponge domain’’

(or ‘‘damping zone’’, or ‘‘absorbing layer’’) and its closure comprises the support of the sponge function r.
More precisely, r P 0 on �Xs and r = 0 identically on �Xp, with r 2 C0ð�XÞ. In this way, we ensure that the

wave disturbances that propagate inside the sponge region are progressively attenuated, while they are left

unaffected inside the physical portion of the computational domain. The specific shape of the damping

zone, along with the precise form of the sponge function, determines the dissipative properties of the

absorbing layer. Ms is defined to be the subset of indices of the subdomains that belong to the sponge zone,

namely Ms = {m 2 M |Xm ˝ Xs} � M and we assume that the subdomain decomposition is such that

Mp [Ms = M and Mp \ Ms = ;. In our simulations, the restrictions of the sponge function in each subdo-

main read, in the local coordinate system ðr; sÞ 2 �D2
:

rmðr; sÞ ¼ rM rm
r

1þrma r
2

� �re
þ rm

s
1þrmb s

2

� �reh i
; m 2 M s;

0;m 2 Mp;

(

with rm
r ; r

m
s ¼ 0 or 1 and rm

a ; r
m
b ¼ 1 or �1 being the parameters which determine the specific form of the

sponge function in accordance to the position of Xm ˝ Xs relatively to the physical domain and to the com-

putational border so that at the end r to be globally continuous, and rM ;re 2 R being parameters defined

by the user in order to control the shape of the sponge function as well as its damping capabilities.

In all our numerical experiments, we utilized the rectangular physical domain Xp = (0,1)2. First, we con-

sidered the computational domain X = (�0.5,1.5)2 partitioned into 16 equally sized elements and used the
Newmark method for the temporal discretization with Dt = 0.0004. Let us say that here as well as in the

previous studies where we utilized absorbing boundary conditions, we ensured that the difference between

the classical and the modified implementations of the Newmark method gave graphically indistinguishable

results for the time steps used. Also note that we were allowed to apply the matrix diagonalization method

for the direct solution of the discrete linear system of equations in a specific orthogonal subdomain Xm

whenever dbrm
r r

m
s ¼ 0 with the implicit Newmark method, a fact that made the overall algorithm even more

efficient. We used a polynomial degree of N = 25 and utilized the values c0 = 2, rM = 40 and ap = 500. Like

in the case with the absorbing boundary conditions, we conducted simulations with Gaussian pulses initi-
ated at the points (x0,y0) = (0.5,0.5) and (x0,y0) = (0.1,0.1) and accordingly used two time intervals defined

as I = (0,1) and I = (0.0,1.6). Fig. 15 shows the decay of the discrete total energy of the wave field for dif-

ferent sets of parameters da, db and re, for the case of the initial pulse located at the centre of the physical

domain. It is rather interesting to observe that the choice (da,db) = (2,1) in the partial differential equation

leads to the formulation proposed by Kosloff and Kosloff in [34], while when (da,db) = (1,0) we have the

‘‘Newtonian cooling’’ or ‘‘friction’’ effect described by Israeli and Orszag in [35]. Similarly, the scaled dis-

crete total energy for the initially located pulse near the corner of the physical region, is illustrated in Fig.

16. Note that in the case when re = 2, the results for the temporal evolution of the scaled total energy are
graphically indistinguishable between the two choices of the parameters da and db, for both the locations of

the initial pulses. Furthermore, noticeable partial wave reflection is observed whenever re = 10, since in this



Fig. 15. Temporal evolution of the scaled discrete total energy for a pulse initially located at (x0,y0) = (0.5,0.5). Rectangular

computational domain. Dissipative wave equations. Dashed line: re = 2 and (da,db) = (1,0). Continuous line: re = 2 and (da,db) = (2,1).

Continuous line with circles: re = 10 and (da,db) = (1,0). Continuous line with squares: re = 10 and (da,db) = (2,1).

Fig. 16. Temporal evolution of the scaled discrete total energy for a pulse initially located at (x0,y0) = (0.1,0.1). Rectangular

computational domain. Dissipative wave equations. Dashed line: re = 2 and (da,db) = (1,0). Continuous line: re = 2 and (da,db) = (2,1).

Continuous line with circles: re = 10 and (da,db) = (1,0). Continuous line with squares: re = 10 and (da,db) = (2,1).
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occasion the damping varies more rapidly than the wave itself (see [3]). This is the appropriate time to state

that we did not, by any means, attempt to conduct a parametric study so as to determine the optimum

choice of parameters for best dissipative effects in the damping zone, but rather performed these simulations

in order to provide numerical evidence that the proposed methods face no difficulty in solving more general

wave equations with first-order temporal differential operators.

Finally, we ended this series of test cases by employing the Newmark method for the solution of the same

problem on the disk X = D[(0.5,0.5),1.0] with the subdomain topology displayed in Fig. 13. This time, the
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physical domain retained its form but the values N = 10, Dt = 0.002, ap = 50 and T = 1 were used for stud-

ying the temporal evolution of a Gaussian pulse originated at the centre of the computational domain. Plots

of the dependence of the scaled discrete total energy of the wave variable on time are presented on Fig. 17

for two different choices of the parameters which determine the nature of the absorbing zone. The derived

results have the predictable decreasing trend and confirm the ability of our numerical method to accurately
simulate dissipative wave phenomena in curvilinear coordinates.

Before ending, let us mention that the overall conclusions we drew from the numerical experiments of

this subsection are the capability of the combined spatial and temporal approximation methods of incor-

porating Robin boundary operators on straight and curved boundaries, as well as the accurate solution of

different forms of dissipative wave equations on general subdomain topologies.

5.6. Acoustic pressure pulse evolution in an axisymmetric constricted tube

In this last problem, we faced a situation more oriented towards applications, namely the axisymmetric

propagation of an acoustic pressure pulse inside a pipe presenting a cosine stenosis. The totality of aero-

acoustic processes in axisymmetric inviscid fluid flows are governed by the Euler differential equations

for compressible fluids, which in an appropriate nondimensional form, read:
Fig. 17
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. Temporal evolution of the scaled discrete total energy for a pulse initially located at (x0,y0) = (0.5,0.5). Disk computational

n. Dissipative wave equations. Continuous line: re = 2 and (da,db) = (1,0). Dashed line: re = 2 and (da,db) = (2,1).
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with q, ux, uy and p the nondimensional depended variables of density, axial velocity, radial velocity and

pressure, respectively, while (x, y) are interpreted as the axial and radial coordinates in a cylindrical frame

of reference. The variables of total energy and total enthalpy per unit mass are defined to be:
Et ¼
p

ðcg � 1Þqþ
u2x þ u2y

2
and H t ¼ Et þ

p
q
;

with cg the specific heat ratio. Since we are concerned with the evolution of small amplitude disturbances in

a stationary fluid medium, we may write that:
q ¼ q0 þ q0; ux ¼ u0x; uy ¼ u0y and p ¼ p0 þ p0;
where the constants q0; p0 2 R with q0,p0 > 0 are of the order of unity, while the perturbations q0; u0x; u
0
y and

p 0 are functions of the spatial and temporal independent variables such that

kq0kL1 	 q0; ku0xkL1 	 1; ku0ykL1 	 1 and kp0kL1 	 p0 for all times. Then, by the usage of standard linea-
rization techniques we reach the conclusion that the temporal evolution of the pressure field p 0, is governed

by the axisymmetric acoustic wave equation with constant wave speed defined by the relation c20 ¼ cg
p0
q0
.

In view of this fact, we considered the numerical solution of the following initial boundary value

problem:
o2p0

ot2 � c20
o2p0

ox2 þ
o2p0

oy2 þ 1
y
op0

oy

� �
¼ 0 on XI ;

p0 ¼ e expf�ap½ðx� x0Þ2 þ ðy � y0Þ
2�g on X for t ¼ 0;

op0

ot ¼ 0 on X for t ¼ 0;

op0

onL
¼ 0 on CN � I ;

op0

onL
þ c0

op0

ot þ
c2
0
j

2
p0 ¼ 0 on CR � I ;

���������������

with e; ap; x0; y0 2 R and j the curvature of the Robin portion of the computational boundary. The spatial

domain was bounded by:
CN ¼ fðx; yÞ 2 oX j ðx; yÞ 2 Cwg [ fðx; yÞ 2 oX jx 2 ð�Lx; LxÞ; y ¼ 0g;

CR ¼ fðx; yÞ 2 oX jx ¼ �Lx; y 2 ð0; LyÞg [ fðx; yÞ 2 oX jx ¼ Lx; y 2 ð0; LyÞg;

with the curve Cw defined as:
Cw : y ¼
Ly ; �Lx 6 x < �Lc;

Ly � ac
2
Ly 1� cos p 1� x

Lc

� �h in o
; �Lc 6 x6 Lc;

Ly ; Lc < x6 Lx;

8><
>:
where ac; Lx; Ly ; Lc 2 R.

For validation purposes, a solution of the axisymmetric Euler equations was also obtained by utilizing a

combination of a spectral collocation form of the discontinuous Galerkin finite element method for the spa-

tial discretization, along with a standard fourth-order Runge–Kutta method for the temporal integration of

the resulting system of first-order ordinary differential equations. The discontinuous Galerkin method for

hyperbolic systems of conservation laws has been studied in detail in [36,37]. A spectral element implemen-
tation has been proposed by Kopriva et al in [38,39] and used in a different context in [40], while several

studies have proved the capability of such methods for accurately solving wave propagation problems

by utilization of high order polynomial approximation and achievement of small phase and dissipation

errors (see [41,42]). In this article, we considered a conforming collocation form of the discontinuous
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Galerkin method for the Euler equations (like in [43]), where the solution was approximated by a tensor

product Legendre expansion, while the inner products were replaced by Legendre-Gauss quadratures.

To obtain a high resolution representation of the underlying geometry, we employed Legendre-Gauss-Lob-

atto interpolation rules for the spatial variables in combination with isoparametric mapping techniques for

the treatment of irregular solution domains. By properly choosing the flux computation points, this meth-
odology only required communication between subdomains which shared common edges, while the differ-

ence in the flux values computed from the neighboring elements was resolved by the approximate Riemann

solver of Roe [44]. The Euler equations were solved on the same computational domain as the acoustic

wave equation, and over the same subdomain topology. The initial conditions utilized, assumed the form:
q ¼ q0; ux ¼ 0; uy ¼ 0; p ¼ p0 þ e expf�ap½ðx� x0Þ2 þ ðy � y0Þ
2�g;
on X for t = 0. Reflective boundary conditions were imposed on the upper wall of the tube and on the sym-

metry axis, while one-dimensional characteristic boundary conditions were enforced on the right and left

computational boundaries by setting appropriate external conditions to the Riemann solver.

In our simulations, we used a high resolution mesh and a subdomain configuration comprised by six

elements, which is displayed on Fig. 18. The time interval for the computations was chosen to be

I = (0,5). For the solution of the acoustic wave equation the Runge–Kutta–Nyström method was em-

ployed for the temporal integration. We considered the values c0 = 1, e = 0.0001, ap = 50,
(x0,y0) = (�0.5,0.0), Lx = 2.5, Ly = 1.0, Lc = 0.5, ac = 0.5, q0 = 1 and cg = 1.4 for our calculations. Each

method was employed to perform two simulations, one with N = 22 and Dt = 0.0005, and another with

N = 25 and Dt = 0.0002. Almost identical results (within graphical accuracy) were found, so for the sake

of brevity we present only the ones produced by the higher resolution simulations. Contour plots of the

pressure disturbance field p 0, as computed by the weak collocation algorithm, are illustrated in Fig. 18 for

various time levels. Notice the smoothness of the solution although the spatial approximation method

does not ensure the C1 continuity of the pressure field except in the limit of infinite resolution. The rel-

ative differences between the solutions as computed by the two methodologies are displayed in Table 18
for several time levels. The discrete norm and metric functions involved in the computation of these dif-

ferences were calculated using Legendre-Gauss quadrature formulas. Very good agreement was con-

cluded, taking under consideration that the acoustic wave equation is only a first-order in e
approximation of the Euler equations. The axial distribution of the pressure perturbation variables is

illustrated in Fig. 19 for the specific time levels presented in Fig. 18 and in Table 18, as calculated by

the two different methods. The results are observed to be graphically indistinguishable, a fact which is

confirmed by the amplitude of the relative differences presented in Table 18.

The axisymmetric form of the acoustic wave equation was also solved by the conventional and mod-
ified formulations of the Newmark time integration method, utilizing the same spatial and temporal

resolutions as previously. The difference between the solutions obtained by the modified and the clas-

sical implementations of the Newmark scheme was negligible for the time steps considered. Table 19

displays the relative differences between the Newmark pseudospectral solution of the wave equation

and the Runge–Kutta discontinuous Galerkin solution of the Euler equations, for the higher resolution

simulations. Direct comparison between Tables 18 and 19 reveals an outstanding agreement among the

pressure fields produced by the different temporal approximation methods for the acoustic wave

equation.
Subsequently, we concentrated on the efficiency of the numerical schemes with respect to CPU time and

computer memory usage. For the thorough examination of the relative performances between the various

methods, we formed the ratios:
KMe
RKDG;t ¼

CMe
t

CRKDG
t

and KMe
RKDG;m ¼ CMe

m

CRKDG
m

;



Fig. 18. Axisymmetric constricted tube acoustic simulation: grid (a), and pressure perturbation variable contour plots at (b) t = 0.1,

(c) t = 0.5, (d) t = 1.0, (e) t = 1.5 and (f) t = 3.8 (Dashed lines are used for the negative contours).
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where CMe
t and CMe

m are already defined in subsection 5.2 for the multidomain Legendre pseudospectral
method, while the symbols CRKDG

t and CRKDG
m are used to indicate analogous quantities for the Runge–

Kutta discontinuous Galerkin method. Table 20 presents the performance results for all the numerical algo-

rithms utilized in the proceeding simulations of this subsection. It is worth noticing that the collaboration

between the Runge–Kutta–Nyström and the weak Legendre collocation method was the most demanding

in terms of CPU time and the least memory consuming. While the latter observation is quite expected, the

former, which is seemingly unreasonable, can be explained by the fact that the Runge–Kutta–Nystöm

method requires computations of second-order spatial partial derivatives on all nodes of the pseudospectral



Table 18

Relative differences of the pressure perturbation variable as calculated by the Runge–Kutta–Nyström Legendre pseudospectral and the

Runge–Kutta discontinuous Galerkin methods for the acoustic pulse evolution inside an axisymmetric constricted tube

t dN;L1ðp0ps; p0dgÞ=kp0dgkN;L1 dN;L2 ðp0ps; p0dgÞ=kp0dgkN;L2 dN;H1 ðp0ps; p0dgÞ=kp0dgkN;H1

0.1 1.05 · 10�4 5.88 · 10�5 1.05 · 10�4

0.5 1.03 · 10�4 8.28 · 10�5 2.31 · 10�4

1.0 2.25 · 10�4 9.87 · 10�5 2.17 · 10�4

1.5 2.29 · 10�4 1.12 · 10�4 2.74 · 10�4

3.8 2.44 · 10�4 1.28 · 10�4 3.00 · 10�4
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grid, at each intermediate stage of every time instant calculation. The only method, among all the other

schemes employed in this comparison, which involves similar calculations, is the modified Newmark time

integrator. In this occasion though, the evaluations of the second-order spatial derivatives are performed

only once in each temporal cycle, in contradiction to the case of the Runge–Kutta–Nyström method, where

such computations must be carried out several times due to the intermediate stage structure of the time inte-

gration algorithm. These operations can be quite expensive whenever mixed partial derivatives appear in

the formulation of the problem, and especially if curvilinear elements are involved in the subdomain topol-

ogy, because of the coordinate transformations that need to be utilized. This inefficiency with the explicit
discretization can possibly be overcome, if the original second-order wave evolution equation is reformu-

lated into a first-order hyperbolic system of partial differential equations and a standard Runge–Kutta

method is used for the temporal approximation. Returning to the results displayed in Table 20, we see that

the implicit methods were proven to be the most efficient with respect to the CPU usage, but unfortunately

occupied far more memory than all the other schemes. This is absolutely expected, since the implicit meth-

ods employ the LU-factorization algorithm for the solution inside the curvilinear elements, as well as for

the confrontation of the interface problems which stem from the time integration procedure.

This numerical example enabled us to test our methodology in the framework of axisymmetric simula-
tions over curvilinear spatial domains. The methods faced no difficulty either by the axis singularity of the

wave spatial differential operator, or by the incorporation of Robin boundary conditions. Finally, let us

conclude our discussion by mentioning the excellent agreement between the results provided by the weak

pseudospectral approximation and those obtained by the spectral collocation form of the discontinuous

Galerkin finite element method for the solution of aeroacoustic wave propagation problems.
6. Conclusions

In this paper, we have presented a weak Legendre collocation domain decomposition method for the

spatial approximation of hyperbolic initial boundary value problems of second order in space and time,

with mixed boundary conditions, on unstructured quadrilateral subdomain topologies. The spectral discre-

tization method is combined with implicit and high order explicit numerical algorithms for the time inte-

gration of the resulting system of ordinary differential equations. The implicit approximation belongs to

the Newmark family of time integrators and leads to a sequence of discretized elliptic problems to be solved

during the temporal integration procedure. A suitable weak formulation of the influence matrix method is
employed for the solution of the discrete elliptic kernels, along with a combination of direct methods for the

treatment of the linear algebraic systems that arise after the full discretization. A numerical technique for

avoiding the amplification of roundoff errors is also investigated. Moreover, we have studied the collabo-

ration of the weak pseudospectral method with a high order explicit Runge–Kutta–Nyström temporal

approximation method and furnished an innovative method for the treatment of boundary conditions at

the intermediate stages of the time integration algorithm so as to surpass the order reduction phenomenon.



Fig. 19. Axial distribution of the pressure perturbation variable for the axisymmetric constricted tube simulation at (a) t = 0.1,

(b) t = 0.5, (c) t = 1.0, (d) t = 1.5 and (e) t = 3.8. Continuous line: Runge–Kutta–Nyström Legendre pseudospectral solution. Dashed

line: Runge–Kutta discontinuous Galerkin solution.
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Table 19

Relative differences of the pressure perturbation variable as calculated by the Newmark Legendre pseudospectral and the Runge–Kutta

discontinuous Galerkin methods for the acoustic pulse evolution inside an axisymmetric constricted tube

t dN;L1ðp0ps; p0dgÞ=kp0dgkN;L1 dN;L2 ðp0ps; p0dgÞ=kp0dgkN;L2 dN;H1 ðp0ps; p0dgÞ=kp0dgkN;H1

0.1 1.09 · 10�4 6.14 · 10�5 1.08 · 10�4

0.5 1.08 · 10�4 8.78 · 10�5 2.29 · 10�4

1.0 2.26 · 10�4 1.10 · 10�4 2.32 · 10�4

1.5 2.43 · 10�4 1.29 · 10�4 2.93 · 10�4

3.8 3.17 · 10�4 1.58 · 10�4 3.34 · 10�4

Table 20

Computer code performance results for the axisymmetric acoustic pulse evolution problem

N Me KMe
RKDG;t KMe

RKDG;m

22 RKN 1.50 0.95

N 0.38 4.17

MN 0.75 4.24

25 RKN 1.61 0.94

N 0.39 5.50

MN 0.79 5.57
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Modifications appropriate for each temporal discretization method, are also formulated for dealing with

the apparent singularity problem encountered by the weak formulation at axisymmetric simulations. Sev-

eral examples have been included to present the performance of the various methodologies and study their

capabilities for solving general hyperbolic differential equations with mixed boundary conditions over cur-

vilinear geometries and subdomain partitions. The theoretically predicted convergence rates have been ver-
ified for all the test cases for which exact solutions were known. Finally, for the most complicated numerical

experiments, our results were proven to be conformable to qualitative predictions and in very good agree-

ment with another well-established numerical method, indicating the robustness and efficiency of the pro-

posed algorithms.

The present spatial approximation method was designed in order to surmount some of the problems

encountered by the strong collocation formulation and extend its applicability in curvilinear geometries

and unstructured subdomain configurations. We proposed a unified form of the weak collocation method

able of imposing boundary operators on curvilinear borders with enhanced accuracy, as well as of treating,
in a natural way, the equations that govern the interface unknowns, for the solution of generic evolution

equations. This method is based on a modified variational formulation of the continuous problem and

manages to deliver geometrically convergent phase and dissipation errors with negligible reflections at

the interface points between adjacent elements, a fact rather crucial for the study of wave propagation phe-

nomena. Furthermore, the spatial discretization algorithm did not face any difficulty in approximating

problems over curvilinear geometries and unstructured subdomain partitions, since its properties remained

unaffected by the underintegration performed because of the replacement of the integral forms with discrete

inner products in the presence of coordinate transformations and variable metric factors. The proposed
combination of the pseudospectral method with two representative members from the families of implicit

and explicit temporal approximation methods, was found to be very computationally efficient and thus ena-

bling the successful utilization of the overall methodology for the study of various wave evolution

problems.
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